Projekt

Obecné

Profil

Generative AI a znalostní management » Historie » Verze 4

Ondřej Nedvěd, 2024-01-11 18:34

1 1 Petra Rajtrová
h1. Obecné téma: Generative AI a znalostní management
2 3 Petra Rajtrová
3
h1. Konkrétní téma: 
4 4 Ondřej Nedvěd
5
Úvod 
6
7
Generativní umělá inteligence (GenAI) je oblast umělé inteligence, která se zabývá tvorbou nového obsahu, dat a uměleckých děl pomocí pokročilých algoritmů strojového učení. Tato technologie má zásadní význam pro současný i budoucí svět, neboť nabízí nové možnosti a výzvy v různých oblastech lidské činnosti. Jednou z těchto oblastí je znalostní management, který se věnuje systematickému zachycování, organizování, sdílení a využívání znalostí v organizacích. Cílem této práce je prozkoumat, jak GenAI ovlivňuje znalostní management a jaké jsou jeho potenciály, přínosy i rizika pro organizace a společnost jako celek. V první části práce se zaměříme na teoretický rámec GenAI a znalostního managementu, vysvětlíme jejich základní koncepty, principy a souvislosti. V druhé části práce představíme několik praktických příkladů, jak GenAI mění přístupy k získávání, uchovávání a sdílení znalostí v různých oblastech a odvětvích. V třetí části práce se budeme věnovat diskusi o výhodách a výzvách, které GenAI přináší pro znalostní management, a to jak z hlediska technologického, tak etického a společenského. V závěru práce shrneme hlavní poznatky a doporučení pro další výzkum a praxi v této oblasti. 
8
Teoretický rámec 
9
10
1.1 Generativní AI 
11
12
Generativní umělá inteligence (GenAI) představuje inovativní formu umělé inteligence schopnou reagovat na variabilní vstupní podněty a generovat rozmanitý obsah. Tato revoluční technologie umožňuje uživatelům vytvářet nový obsah, včetně textů, obrázků, videí, zvuků, kódů, 3D návrhů a dalších médií, pomocí učení a tréninku na existujících online dokumentech a dalších zdrojích. ​(What Is Generative AI? Definition, Applications, and Impact, 2023)​ 
13
14
V současné době se GenAI nejčastěji využívá k tvorbě obsahu v reakci na požadavky v přirozeném jazyce, což eliminuje potřebu hlubších znalostí nebo kódování. Využívané algoritmy, založené na pokročilých modelech umělé inteligence, jsou trénovány na rozmanitém spektru neoznačených dat, což umožňuje flexibilitu v různých úkolech a oblastech. ​(Gartner Experts Answer the Top Generative AI Questions for Your Enterprise, nedatováno)​ 
15
16
Při vytváření těchto trénovaných modelů je nezbytná sofistikovaná matematika a výpočetní výkon. Gartner označuje generativní AI za technologii s obecným účelem, jejíž dopad lze srovnat s parním strojem, elektřinou a internetem. I přes možné opadnutí počátečního nadšení se očekává, že vliv GenAI bude stále narůstat, jakmile lidé a podniky objeví nové a inovativní aplikace této technologie v každodenním životě a pracovním prostředí. 
17
18
Strojové učení 
19
20
Strojové učení je oblast studia v umělé inteligenci, která se zabývá vývojem a studiem statistických algoritmů, které mohou efektivně zobecňovat, a tak vykonávat úkoly bez explicitních instrukcí. Strojové učení využívá algoritmy k identifikaci vzorů v datech a tyto vzory se pak používají k vytvoření datového modelu, který dokáže formulovat předpovědi. ​(What is machine learning?, nedatováno)​ 
21
22
(What is Machine Learning? | IBM) 
23
24
Neuronové sítě 
25
26
Neuronová síť (NN) je algoritmus strojového učení, který napodobuje strukturu a operační schopnosti lidského mozku k rozpoznání vzorů z tréninkových dat. Neuronová síť je sada algoritmů vytvořených po fungování lidského mozku a lidského nervového systému. Skládá se ze sady algoritmů a matematických modelů, které umožňují počítači naučit se provádět specifické úkoly. (What are Neural Networks? | IBM) 
27
28
 
29
30
1.2 Znalostní managent 
31
32
Znalostní management je proces, který se zabývá identifikací, organizací, ukládáním a šířením informací v rámci organizace. Tento proces zahrnuje tři klíčové fáze: shromažďování znalostí, ukládání znalostí a distribuci znalostí. Základy znalostního managementu zahrnují vytváření a objevování znalostí v organizaci, využití nástrojů a technik, které ovlivňují informace. V rámci znalostního managementu je klíčové pochopení úspěšných faktorů, které již nesou mnoho znalostí o tom, jak organizace fungovala v minulosti. Tyto faktory poskytují důležitý pohled na to, jak efektivně byly využívány a sdíleny znalosti v organizaci. Tím se stávají cenným zdrojem pro optimalizaci budoucích procesů a strategií znalostního managementu. Důležitou součástí základů znalostního managementu je také pochopení, že znalosti existují ve třech základních formách: explicitní, implicitní a tacitní: 
33
34
 Explicitní znalosti jsou formální a systematické, často jsou zaznamenány a snadno sdíleny. 
35
36
 Implicitní znalosti jsou neformální a nejsou tak snadno sdíleny. 
37
38
 Tacitní znalosti jsou osobní, kontextově specifické, hluboko zakořeněné v jednotlivci a často obtížně artikulovatelné.  
39
40
Znalostní management také zahrnuje pochopení, že znalosti jsou dynamické a neustále se vyvíjejí s novými informacemi a zkušenostmi. Proto je důležité, aby procesy znalostního managementu byly flexibilní a schopné se přizpůsobit změnám. 
41
42
(https://www.ibm.com/topics/knowledge-management) 
43
44
Cíle znalostního managementu 
45
46
Hlavním cílem znalostního managementu je dosáhnout výrazného zlepšení celkové efektivity organizace a zajistit udržitelné uchování klíčových znalostí v rámci společnosti. Tento proces není pouze o shromažďování informací, ale spíše o systematickém zpracování a využití znalostí k podpoře rozhodovacích procesů a inovací. 
47
48
Dalším klíčovým cílem znalostního managementu je vytvořit prostředí, ve kterém mají zaměstnanci snadný přístup k potřebným informacím a mohou efektivně komunikovat s lidmi, kteří tyto znalosti vlastní. Tímto způsobem se organizace snaží odstranit překážky ve sdílení znalostí a podporuje synergii mezi jednotlivci a týmy. 
49
50
Praktický znalostní management umožňuje organizacím systematicky šířit informace a zvyšovat úroveň odbornosti jednotlivců i týmů. Tato strategie přispívá k neustálému zlepšování pracovních postupů, inovacím a celkovému růstu produktivity. Zaměřuje se nejen na dokumentaci existujících znalostí, ale také na podporu procesů, které podněcují tvorbu nových informací a zkušeností. 
51
52
Výsledkem je nejen efektivnější a agilnější organizace, ale také posílení individuálních schopností zaměstnanců a kolektivní inteligence týmů. Znalostní management se tak stává klíčovým nástrojem pro trvalou konkurenceschopnost a inovační vývoj organizací v dynamickém prostředí. 
53
54
(https://www.ibm.com/topics/knowledge-management  || https://www.kminstitute.org/blog/goal-knowledge-management  || https://bloomfire.com/blog/goals-knowledge-management-technology/) 
55
56
 
57
58
Nástroje znalostního managementu 
59
60
Nástroje znalostního managementu představují klíčový prvek pro úspěšnou implementaci a udržitelnost procesů v oblasti správy znalostí. Tyto aplikace fungují jako prostředky, které usnadňují shromažďování, organizaci a distribuci informací, přičemž si kladou za cíl optimalizovat využívání znalostí v rámci organizace.  
61
62
Různé případy užití a potřeby organizací vyžadují rozmanité nástroje znalostního managementu. I přes tuto diverzitu mají všechny tyto nástroje společný konečný cíl – efektivně organizovat a využívat existující znalosti a zkušenosti. Následují některé příklady těchto nástrojů:  
63
64
Návody a Manuály: 
65
66
Tento typ nástrojů slouží k systematickému zaznamenávání postupů, procedur a detailních informací, které jsou klíčové pro fungování organizace. 
67
68
Umožňují zaměstnancům rychlý přístup k standardním postupům a metodikám, což vede k zvýšení konzistence a efektivity práce. 
69
70
Webové Stránky pro Společnost: 
71
72
Tento typ nástroje poskytuje online platformu, kde organizace může sdílet informace, zkušenosti a dokumentaci se svými členy. 
73
74
Podporuje otevřenou a transparentní komunikaci, umožňuje týmům a jednotlivcům snadný přístup k relevantním datům a sdílení know-how. 
75
76
Systémy Pro Správu Dokumentů: 
77
78
Tyto systémy umožňují efektivní organizaci a ukládání dokumentů, čímž usnadňují sdílení a vyhledávání informací. 
79
80
Zvyšují přehlednost a snižují redundanci, což v konečném důsledku vede k rychlejším rozhodovacím procesům. 
81
82
Kolaborativní Platformy: 
83
84
Tyto nástroje podporují spolupráci a sdílení nápadů mezi členy týmu. 
85
86
Posilují kolektivní inteligenci týmu a zlepšují schopnost organizace adaptovat se na nové výzvy a inovace. 
87
88
Každý z těchto nástrojů přináší své vlastní výhody a je navržen s ohledem na specifické potřeby organizace. Kombinací těchto prostředků může organizace dosáhnout efektivního a komplexního znalostního managementu, což je klíčovým faktorem pro udržení konkurenceschopnosti v dnešním dynamickém podnikatelském prostředí. 
89
90
https://www.indeed.com/career-advice/career-development/knowledge-management-tools 
91
92
https://www.zendesk.com/service/help-center/knowledge-management-tools/ 
93
94
Integrace Generative AI do znalostního managementu 
95
96
Příklady, jak Generative AI mění přístupy k uchovávání a sdílení znalostí. 
97
98
Diskuse o výhodách (např. automatizace, vylepšení rozhodovacích procesů) a výzvách (etické otázky, bias). 
99
100
Během posledních let (nejznačněji poslední dva roky) se významně změnil způsob, jak využíváme internet a dostupné aplikace využívající generativní umělou inteligenci. Jedno z odvětví zasažené tímto fenoménem je i znalostní management, na které se podíváme detailněji. 
101
102
Dříve týmům zabývajícím se znalostním managementem zabíralo mnohonásobně více času například vymýšlení různých článků, poté jejich samotné psaní a hledání důvěryhodných zdrojů pro jejich podložení a také vytváření obrázků či grafů pro uchopitelnější vysvětlení. To se s dnešní dobou výrazně změnilo, protože na každou část výše popsaného procesu už existují aplikace využívající generativní umělou inteligenci, které vám tyto procesy usnadní a značně zrychlí.  
103
104
Nyní si ukážeme pár příkladů, jak se dá použít generativní UI pro usnadnění a zrychlení práce ve znalostním managementu. 
105
106
Psaní článků 
107
108
Zdokonalení vyhledávání 
109
110
Automatizace... 
111
112
 
113
114
Psaní článků 
115
116
Jedna z velkých výhod, které tento relativně nový fenomén přináší, je zdokonalování a rozšiřování znalostního managementu v týmech, které ho využívají. Organizace totiž často přicházejí o příležitosti k získání cenných znalostí, vzhledem k tomu, že zaměstnanci nemají vždy čas psát články do své znalostní báze. Nástroje generativní AI však mohou proces psaní urychlit, protože dokážou přeměnit kousky informací – například odrážky nebo údaje v lístku servisního oddělení – na plnohodnotné články.  
117
Tato automatizace umožňuje zaměstnancům, jako jsou pracovníci zákaznického servisu a podpory, vytvářet znalostní databázi organizace, zatímco přijímají hovory zákazníků a řeší dílčí úkoly. Tento proces vede k úplnějším znalostním bázím, což v budoucnu pomáhá zákazníkům a agentům rychleji řešit problémy.1 
118
119
 
120
121
Zlepšuje vyhledávání 
122
123
Znalostní báze by měla nabízet intuitivní funkci vyhledávání, aby uživatelé mohli snadno najít odpovědi na své otázky. Pokročilé schopnosti zpracování přirozeného jazyka v chatbotech poháněných generativní umělou inteligencí mohou přiřadit záměr vyhledávajícího ke správné odpovědi efektivněji než předchozí generace chatbotů s umělou inteligencí, řekl Mohr. 
124
125
Nástroje pro generativní AI navíc dokážou vytáhnout odpovědi z konkrétních oddílů, odstavců a vět v dlouhých článcích a prezentovat je uživatelům v konverzačním stylu. 
126
127
  
128
129
"Nejde o to, že se vynoří hromada znalostních článků a řekne se: 'Tady je několik odpovědí, které by mohly fungovat'. Vyhledává v nich a říká: 'Aha, tady je odpověď na otázku... A mimochodem, tady je odkaz na místo, kde jsme tuto informaci našli,'" řekl Mohr.1 
130
131
 
132
133
Identifikuje mezery ve znalostech a duplicity 
134
135
I v rozsáhlých a komplexních znalostních databázích mohou chybět odpovědi na důležité otázky. Schopnost generativní umělé inteligence rychle analyzovat velké objemy informací může organizacím pomoci identifikovat tyto mezery, aby je mohli řešit odborníci na danou problematiku (SME), řekl Mohr.1 
136
137
Například více zákazníků může prohledávat samoobslužný portál svého poskytovatele CRM, aby se dozvěděli, jak vyřešit určitý problém. Nástroj generativní umělé inteligence poskytovatele může rychle analyzovat všechny znalostní články společnosti a najít tuto odpověď. Pokud nenajde shodu, může téma označit a upozornit nejvhodnější malý nebo střední podnik. 
138
139
Generativní AI může také organizacím pomoci identifikovat duplicitní články, dodal Mohr. Duplicitní články – které se zabývají stejným tématem nebo problémem – ve znalostní bázi mohou uživatele zmást, protože nevědí, která verze obsahuje nejaktuálnější informace. Generativní umělá inteligence dokáže analyzovat články a odhalit ty, které se týkají stejného problému, a to i v případě, že duplikáty používají odlišné formulace a formátování. 
140
141
 
142
143
Automatizuje procesy řízení 
144
145
Organizace často nechávají týmy pro správu ručně kontrolovat znalostní články před jejich zveřejněním, aby se ujistily, že neobsahují osobní údaje. Generativní umělá inteligence může tento proces automatizovat a urychlit, řekl Mohr. 
146
147
"Místo toho, aby to kontroloval člověk, ... [nástroj umělé inteligence] sám aplikuje inženýrskou výzvu, která se podívá na ... cokoli se strukturou čísla sociálního zabezpečení nebo strukturou telefonního čísla ... a pak to označí a řekne: 'Ne, tohle nemůže být zveřejněno, dokud se na to někdo nepodívá,'" řekl Mohr. 
148
149
Články, které projdou automatickou kontrolou správy, mohou přeskočit proces ruční kontroly, což organizacím pomáhá rychleji zpřístupnit znalosti.1 
150
151
 
152
153
https://www.techtarget.com/searchcontentmanagement/feature/How-generative-AI-can-improve-knowledge-management 
154
155
https://hbr.org/2023/11/how-generative-ai-will-transform-knowledge-work 
156
157
https://www.ibm.com/blog/scale-knowledge-management-use-cases-with-generative-ai/ 
158
159
https://jackwshepherd.medium.com/old-ways-of-accessing-knowledge-generative-ai-fbc934d9e668 
160
161
https://www.dataversity.net/knowledge-management-and-ai-putting-your-internal-data-to-work/ 
162
163
 
164
165
 
166
167
 
168
169
 
170
171
 
172
173
MURPHY, T. How generative AI can improve knowledge management. 13.10.2023. www.techtarget.com/searchcontentmanagement/feature/How-generative-AI-can-improve-knowledge-management 
174
175
Případové studie  
176
177
Úvod k Případovým Studiím: 
178
179
proč byly zvolené případové studie?  
180
181
jak jsou relevantní pro téma Generative AI a znalostního managementu? 
182
183
Případová Studie 1: Automatizace Znalostních Procesů 
184
185
Generativní AI se stává klíčovým nástrojem v oblasti znalostního managementu, kde přináší značné výhody v automatizaci sběru, organizace a analýzy znalostí¹². Jako příklad můžeme uvést oblast zdravotnictví, kde generativní AI modely, jako je ChatGPT a Bard, umožňují automatickou analýzu textu a extrakci klíčových informací z různých typů dokumentů, jako jsou elektronické zdravotnické záznamy⁹.  
186
187
V oblasti reportingu se generativní AI využívá k vytváření automatických zpráv. Například platforma Petal umožňuje uživatelům komunikovat s jejich digitálním expertem a získávat přesné a důvěryhodné odpovědi okamžitě[^10^]. Dalším příkladem je SparkBeyond, který využívá generativní AI k vytváření konkrétních obchodních náhledů spolu s celkovými zprávami a aktualizuje tyto náhledy v průběhu času a jak se mění data⁸. 
188
189
Použití generativní AI v těchto oblastech přineslo významné dopady na efektivitu, přesnost a dostupnost znalostí. McKinsey odhaduje, že generativní AI by mohla přidat ekvivalent 2,6 až 4,4 bilionu dolarů ročně napříč 63 analyzovanými případy užití¹². Dále bylo zjištěno, že zákaznické podpůrné agenty, kteří používají AI nástroj k řízení jejich konverzací, viděli téměř 14% nárůst produktivity¹⁵. Generativní AI také zlepšuje kvalitu znalostí tím, že identifikuje a opravuje chyby, archivuje staré informace a přidává kontext a další informace k článkům o znalostech⁴. 
190
191
 
192
193
Zdroj: Konverzace s Bingem, 11. 1. 2024 
194
195
(1) How Generative AI Is Revolutionizing Knowledge Management - Forbes. https://www.forbes.com/sites/forbestechcouncil/2023/08/23/how-generative-ai-is-revolutionizing-knowledge-management/. 
196
197
(2) Scale knowledge management use cases with generative AI. https://www.ibm.com/blog/scale-knowledge-management-use-cases-with-generative-ai/. 
198
199
(3) Making document analysis easier with generative AI. https://www.crownrms.com/insights/making-document-analysis-easier-with-generative-ai/. 
200
201
(4) Document analysis platform | Petal. https://www.petal.org/. 
202
203
(5) Generative AI for data analytics: the future of ... - SparkBeyond. https://www.sparkbeyond.com/articles/generative-ai-for-analytics-the-future-of-enterprise-sense-making. 
204
205
(6) Economic potential of generative AI | McKinsey. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier. 
206
207
(7) Measuring the Productivity Impact of Generative AI | NBER. https://www.nber.org/digest/20236/measuring-productivity-impact-generative-ai. 
208
209
(8) How Generative AI Can Benefit Your Knowledge Management. https://www.ivanti.com/en-au/blog/how-generative-ai-can-benefit-your-knowledge-management. 
210
211
(9) Generative AI Knowledge Management Revolution. https://www.rezolve.ai/blog/generative-ai-knowledge-management-employee-support. 
212
213
(10) Generative AI in Knowledge Management and Contact Centers - Shelf. https://shelf.io/blog/generative-ai-knowledge-management/. 
214
215
(11) Automated Report Generation with Generative AI | Coursera. https://www.coursera.org/learn/automated-report-generation-with-generative-ai. 
216
217
(12) Generative AI: What Is It, Tools, Models, Applications and Use Cases. https://www.gartner.com/en/topics/generative-ai. 
218
219
(13) Document AI Custom Extractor, powered by generative AI, is now GA .... https://cloud.google.com/blog/products/ai-machine-learning/document-ai-custom-extractor-powered-by-generative-ai-is-now-ga. 
220
221
(14) The state of AI in 2023: Generative AI’s breakout year. https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-AIs-breakout-year. 
222
223
(15) How Managers Can Harness Generative AI for Efficiency. https://aurisai.io/blog/generative-ai-efficiency/. 
224
225
Případová Studie 2: Zvýšení Inovací a Kreativity 
226
227
Generativní umělá inteligence (Generative AI) představuje revoluční nástroj, který mění způsob, jakým organizace vytvářejí, analyzují a optimalizují informace⁵. Generativní AI se stává klíčovou součástí společnosti, ve které lidé a stroje spolupracují⁵. Tato technologie nabízí transformační příležitosti pro firmy, neboť dokáže měnit způsob, jakým se práce provádí napříč funkcemi a pracovními postupy². 
228
229
Jedním z příkladů organizací, které využívají Generative AI k podpoře inovativních procesů a kreativního řešení problémů, je Taskade. Tato firma využívá Generative AI k generování unikátních, nelineárních nápadů, které mohou pomoci při brainstormingu a tvorbě nových konceptů¹⁴. 
230
231
Generative AI může pomoci při brainstormingu tím, že nabídne nápady založené na datech, které obohatí mapy empatie, generuje různorodé prototypy řešení a umožní rychlejší iteraci na základě zpětné vazby¹⁶. Generative AI také dokáže vytvářet obsah v reakci na přirozené jazykové požadavky, což umožňuje bezproblémovou interakci a výměnu nápadů¹⁴. 
232
233
Generative AI má také významný dopad na inovační procesy. Díky své schopnosti zpracovávat extrémně velké a rozmanité sady nestrukturovaných dat a provádět více než jednu úlohu, může Generative AI přinést nevídanou rychlost a kreativitu do oblastí jako je design, výzkum a generování textu⁵. Generative AI také umožňuje rychlejší vývoj produktů, vylepšený zákaznický zážitek a zvýšenou produktivitu zaměstnanců⁵. 
234
235
Generative AI také zlepšuje kvalitu a originalitu řešení. Díky své schopnosti podporovat divergentní myšlení, výzvu odborného zkreslení, pomoc při hodnocení nápadů, podporu zdokonalování nápadů a usnadnění spolupráce mezi uživateli⁴, může Generative AI pomoci překonat tyto výzvy a doplnit kreativitu zaměstnanců a zákazníků, pomoci jim produkovat a identifikovat nové nápady a zlepšit kvalitu surových nápadů⁴. 
236
237
 
238
239
Zdroj: Konverzace s Bingem, 11. 1. 2024 
240
241
(1) Generative AI: What Is It, Tools, Models, Applications and Use Cases. https://www.gartner.com/en/topics/generative-ai. 
242
243
(2) How companies can embrace generative AI innovation | McKinsey. https://www.mckinsey.com/capabilities/strategy-and-corporate-finance/our-insights/companies-with-innovative-cultures-have-a-big-edge-with-generative-ai. 
244
245
(3) Harnessing AI for Brainstorming: A New Era of Idea Generation | Taskade. https://www.taskade.com/blog/ai-brainstorming/. 
246
247
(4) Is AI the Ultimate Brainstorming Tool? - Medium. https://medium.com/@govindh_imba/is-ai-the-ultimate-brainstorming-tool-23f95aa6c4a7. 
248
249
(5) How Generative AI Can Augment Human Creativity - Harvard Business Review. https://hbr.org/2023/07/how-generative-ai-can-augment-human-creativity. 
250
251
(6) How Generative AI Could Disrupt Creative Work - Harvard Business Review. https://hbr.org/2023/04/how-generative-ai-could-disrupt-creative-work. 
252
253
(7) Fostering continuous innovation and creativity with generative AI. https://workspace.google.com/blog/ai-and-machine-learning/innovation-and-creativity-generative-ai. 
254
255
(8) Economic potential of generative AI | McKinsey. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier. 
256
257
(9) Generative AI and Sustainability: Green Tech Innovations in 2024. https://techbullion.com/generative-ai-and-sustainability-green-tech-innovations-in-2024/. 
258
259
(10) What is Generative AI & Why is It Important? | Accenture. https://www.accenture.com/in-en/insights/generative-ai. 
260
261
(11) How Generative AI Is Revolutionizing Knowledge Management - Forbes. https://www.forbes.com/sites/forbestechcouncil/2023/08/23/how-generative-ai-is-revolutionizing-knowledge-management/. 
262
263
(12) Scale knowledge management use cases with generative AI. https://www.ibm.com/blog/scale-knowledge-management-use-cases-with-generative-ai/. 
264
265
(13) Generative AI Knowledge Management Revolution. https://www.rezolve.ai/blog/generative-ai-knowledge-management-employee-support. 
266
267
(14) How Generative AI Can Benefit Your Knowledge Management. https://www.ivanti.com/en-au/blog/how-generative-ai-can-benefit-your-knowledge-management. 
268
269
(15) Generative AI in Knowledge Management and Contact Centers - Shelf. https://shelf.io/blog/generative-ai-knowledge-management/. 
270
271
(16) Generative AI and the future of problem-solving - UX Collective. https://uxdesign.cc/generative-ai-and-the-future-of-problem-solving-revised-9d5cd53ae85b. 
272
273
(17) Will ChatGPT replace human creativity? A designer’s perspective. https://www.designit.com/stories/point-of-view/will-chatgpt-replace-human-creativity. 
274
275
Případová Studie 3: Řešení Etických a Bias otázek 
276
277
Generativní umělá inteligence (Generative AI) představuje revoluční nástroj, který mění způsob, jakým organizace vytvářejí, analyzují a optimalizují informace⁸. Generative AI se stává klíčovou součástí společnosti, ve které lidé a stroje spolupracují⁸. Tato technologie nabízí transformační příležitosti pro firmy, neboť dokáže měnit způsob, jakým se práce provádí napříč funkcemi a pracovními postupy². 
278
279
Jedním z příkladů, kde byly identifikovány a řešena etická dilemata nebo bias (předpojatost) v generativní AI, je UNESCO. Tato organizace uvádí příklady genderového biasu v umělé inteligenci, který pochází ze stereotypních reprezentací hluboko zakořeněných v našich společnostech¹. Například, pokud zadáte do vyhledávače frázi "největší vůdci všech dob", pravděpodobně uvidíte seznam světových prominentních mužských osobností. Kolik žen se v tomto seznamu objeví? Podobně, pokud zadáte do vyhledávače "školní dívka", pravděpodobně se objeví stránka plná žen a dívek v různých sexualizovaných kostýmech https://www.unesco.org/en/artificial-intelligence/recommendation-ethics). 
280
281
UNESCO se s tímto problémem vypořádalo tím, že vytvořilo první globální standard pro etiku AI - 'Doporučení o etice umělé inteligence' v listopadu 2021. Tento rámec byl přijat všemi 193 členskými státy. (https://www.unesco.org/en/artificial-intelligence/recommendation-ethics/cases)  UNESCO také publikovalo metodologii pro hodnocení připravenosti na AI, diagnostický nástroj, který má podpořit vlády při zajištění toho, aby byla umělá inteligence vyvíjena a nasazována eticky. (https://articles.unesco.org/en/articles/artificial-intelligence-unesco-publishes-policy-paper-ai-foundation-models) 
282
283
Organizace přistupují k odhalování a minimalizaci biasu v generovaných datech a výstupech AI různými způsoby. NIST například doporučuje širší pohled na zdroje těchto biasů - od procesů strojového učení a dat používaných k tréninku softwaru AI až po širší společenské faktory, které ovlivňují, jak se technologie vyvíjí⁴. Další doporučení zahrnují použití nulových nebo prvních stran dat, udržování dat aktuálních a dobře označených, zajištění, že je člověk zapojen do smyčky, testování a opětovné testování a získávání zpětné vazby². 
284
285
Generative AI má také významný dopad na spravedlnost a objektivitu v procesu znalostního managementu. Díky své schopnosti podporovat divergentní myšlení, výzvu odborného zkreslení, pomoc při hodnocení nápadů, podporu zdokonalování nápadů a usnadnění spolupráce mezi uživateli⁴, může Generative AI pomoci překonat tyto výzvy a doplnit kreativitu zaměstnanců a zákazníků, pomoci jim produkovat a identifikovat nové nápady a zlepšit kvalitu surových nápadů⁴. 
286
287
Zdroj: Konverzace s Bingem, 11. 1. 2024 
288
289
(1) How Generative AI Is Revolutionizing Knowledge Management - Forbes. https://www.forbes.com/sites/forbestechcouncil/2023/08/23/how-generative-ai-is-revolutionizing-knowledge-management/. 
290
291
(2) Managing the Risks of Generative AI - Harvard Business Review. https://hbr.org/2023/06/managing-the-risks-of-generative-ai. 
292
293
(3) Artificial Intelligence: examples of ethical dilemmas | UNESCO. https://www.unesco.org/en/artificial-intelligence/recommendation-ethics/cases. 
294
295
(4) There’s More to AI Bias Than Biased Data, NIST Report Highlights. https://www.nist.gov/news-events/news/2022/03/theres-more-ai-bias-biased-data-nist-report-highlights. 
296
297
(5) Generative AI Ethics in 2024: Top 6 Concerns - AIMultiple. https://research.aimultiple.com/generative-ai-ethics/. 
298
299
(6) NIST Proposes Approach for Reducing Risk of Bias in Artificial .... https://www.nist.gov/news-events/news/2021/06/nist-proposes-approach-reducing-risk-bias-artificial-intelligence. 
300
301
(7) What Do We Do About the Biases in AI? - Harvard Business Review. https://hbr.org/2019/10/what-do-we-do-about-the-biases-in-ai. 
302
303
(8) How to Reduce Bias in AI with a Focus on Training Data - Appen. https://appen.com/blog/how-to-reduce-bias-in-ai/. 
304
305
(9) Generative artificial intelligence as a new context for management .... https://www.emerald.com/insight/content/doi/10.1108/CEMJ-02-2023-0091/full/html. 
306
307
(10) Frontiers | Generative artificial intelligence empowers educational .... https://www.frontiersin.org/articles/10.3389/feduc.2023.1183162/full. 
308
309
(11) [2107.07754] Measuring Fairness in Generative Models - arXiv.org. https://arxiv.org/abs/2107.07754. 
310
311
(12) undefined. https://doi.org/10.1108/CEMJ-02-2023-0091. 
312
313
Závěr: 
314
315
Krátké shrnutí klíčových poznatků z případových studií. 
316
317
Jak tyto studie ukazují potenciál a výzvy Generative AI ve znalostním managementu. 
318
319
Budoucnost Generative AI a znalostního managementu 
320
321
Budoucnost Generative AI a znalostního managementu slibuje revoluci v způsobu, jakým organizace shromažďují, uchovávají a využívají své znalosti. Tato kapitola se zabývá klíčovými trendy a vývojem v oblasti Generative AI a jeho dopadem na znalostní management. 
322
323
Historie a vývoj Generative AI představují klíčové milníky a technologické inovace, které posunuly tuto oblast kupředu. Od prvních konceptů až po současné technologické výzvy – všechno to má vliv na budoucnost Generative AI. 
324
325
Generative AI již nyní nachází uplatnění ve znalostním managementu. Diskutujte o aktuálním využití nástrojů a aplikací Generative AI, které organizacím umožňují zlepšit sdílení a využívání znalostí. S příchodem spotřebitelských programů generative AI, jako jsou Google Bard a OpenAI ChatGPT, je trh generative AI připraven na explozi. Podle nového zprávy od Bloomberg Intelligence (BI) by mohl generative AI trh vzrůst do roku 2033 na 1,3 bilionu dolarů, zatímco v roce 2022 byla jeho velikost pouze 40 miliard dolarů. Růst by mohl dosáhnout CAGR 42%, přičemž bude poháněn infrastrukturou pro školení v krátkodobém horizontu a postupně se přesune k inferenčním zařízením pro velké jazykové modely (LLM), digitální reklamy, specializovaný software a služby ve střednědobém a dlouhodobém horizontu, jak uvádí výzkum BI. 
326
327
Navíc vzrůstající poptávka po produktech generative AI by mohla přidat zhruba 280 miliard dolarů nových softwarových příjmů, poháněných specializovanými asistenty, novými infrastrukturními produkty a spolujezdci, kteří urychlují programování. Společnosti jako Amazon Web Services, Microsoft, Google a Nvidia by mohly být největšími příjemci, protože podniky přesunují více pracovních zátěží do veřejného cloudu. 
328
329
Možnosti a rizika spojená s dalším rozvojem těchto technologií 
330
331
Možnosti a rizika spojená s dalším rozvojem generativních technologií jsou rozmanitá a komplexní. Na pozitivní straně lze očekávat, že tyto technologie budou nadále přinášet inovace a zlepšení v různých odvětvích. V oblasti znalostního managementu mohou generativní AI přinést efektivnější způsoby shromažďování, uchovávání a využívání informací, čímž usnadní rychlé rozhodování a kreativní procesy. Zároveň mohou přispět k vývoji personalizovaných asistentů a nástrojů, které zvýší produktivitu a zlepší uživatelský zážitek. 
332
333
Nicméně, s tímto pokrokem přicházejí i výzvy a potenciální rizika. Etické otázky spojené s generativními technologiemi zahrnují možné zneužití pro šíření dezinformací, vytváření falešných informací a potenciální ohrožení soukromí jednotlivců. S nárůstem schopností generativních modelů mohou být lidé vystaveni novým hrozbám v oblasti kybernetické bezpečnosti a zneužití technologií pro manipulaci s obsahem. 
334
335
Důležité je také zdůraznit, že se s rozvojem těchto technologií mohou prohlubovat nerovnosti a vznikat nové sociální a ekonomické disparitety. Přístup k pokročilým generativním nástrojům a technologiím nemusí být rovnoměrně distribuován, což může vytvářet digitální propast a omezení příležitostí. 
336
337
Organizace a společnost jako celek budou muset aktivně řešit tyto otázky a pracovat na implementaci odpovídajících regulačních rámců a standardů. Otevřený dialog mezi průmyslem, vládami a občanskou společností bude klíčový pro spravedlivý a odpovědný rozvoj generativních technologií, který přinese skutečný prospěch společnosti. 
338
339
Závěr 
340
341
Shrnutí hlavních zjištění. 
342
343
Doporučení pro organizace, jak efektivně využívat Generative AI pro zlepšení znalostního managementu.