Projekt

Obecné

Profil

Data sources » Historie » Verze 27

Alex Konig, 2021-04-21 18:23

1 1 Alex Konig
h1. Data sources
2 2 Alex Konig
3 12 Alex Konig
h2. ZČU open data
4 1 Alex Konig
5 4 Alex Konig
All ZČU data can be downloaded in formats xml, csv and json.
6
7 22 Alex Konig
As discussed in further chapters there are certain complications with data sources not providing sufficient data granuality or amount. However there is a possibility that the data will in future contain more suitable datasets, and such should be at least acknowledged to some degree. However this is more of a topic for [[Prediction models]], where it will be further discussed. Further thorough the data standard university tags are used, however in some cases there is no source to find out what they mean (for example "parkoviště" or "STUD-PRA1") so we had to assume where they are.
8 4 Alex Konig
9 22 Alex Konig
To be able do display correct predictions we need to process this data in such a way that divides this data into data belonging to specific buildings. Those buildings are:
10 1 Alex Konig
11 22 Alex Konig
Buildings on campus:
12
* Fakulta strojní + ekonomická
13
* Fakulta designu a umění
14
* Fakulta aplikovaných věd
15
* Fakulta elektrotechnická
16
* Rektorát ZČU
17
* Menza
18
* Library
19
* CIV, ZV, UCV, IPC
20
* Univerzitní 14	
21 1 Alex Konig
22 22 Alex Konig
Dorms:
23
* Koleje armabeton
24
* Koleje Bory
25
* Koleje Lochotín
26
* Koleje klatovská
27 1 Alex Konig
28 22 Alex Konig
Buildings in the city:
29
* Dominikánská 9
30
* Husova 11
31
* Chodské náměstí 1
32
* Jungmannova 1, 3
33
* Klatovská 51
34
* Kollárova 19
35
* Riegrova 11, 17
36
* Sady Pětatřicátníků 14, 16
37
* Sedláčkova 15, 19, 31, 38-40, Veleslavínova 27-29, 42
38
* TESLOVA 5, 9, 9a, 11 - objekty C, F, G, H v areálu VTP Plzeň
39
* Tylova 59
40
* Veleslavínova 42
41 1 Alex Konig
42 26 Alex Konig
Data from Cheb are discarded due to the buildings being far from the others which would cause problems in vizualization and also for worries of data containing too little relevant information.
43
44 22 Alex Konig
Classroom prefixes can be divided in the following way:
45 1 Alex Konig
46 22 Alex Konig
|_. Building |_. Abbreviation |_. Room prefixes |
47 23 Alex Konig
| Fakulta strojní + ekonomická | FST+FEK  | UV, UU, UK, UL, UP, UF, UT |
48 22 Alex Konig
| Fakulta designu a umění | FDU | LS |
49
| Fakulta aplikovaných věd | FAV | UN, UC, US |
50
| Fakulta elektrotechnická | FEL | EU, EK, EL, EP, ES, ET, EH, EZ |
51
| Rektorát ZČU | REK | UR |
52
| Menza | MENZA | - |
53
| Library | LIB | UB |
54
| CIV, ZV, UCV, IPC | CIV | UI |
55
| Univerzitní 14 | U14 | UT |
56
| Univerzitní 22 | U22 | UH, UD, UX |
57
| | | |
58
| Dominikánská 9 | D9 | DD |
59
| Husova 11 | H11 | HJ |
60
| Chodské náměstí 1 | CH1 | CH |
61
| Jungmannova 1, 3 | J1+3 | JJ |
62
| Klatovská 51 | K51 | KL |
63
| Kollárova 19 | K19 | KO |
64
| Riegrova 11, 17 | R11+17 | RJ, RS |
65
| Sady Pětatřicátníků 14, 16 | SP14+16 | PC, PS |
66
| Sedláčkova 15, 19, 31, 38-40, Veleslavínova 27-29, 42 | S15-40+V27-42 | SP, SD, ST, SO |
67
| TESLOVA 5, 9, 9a, 11 - objekty C, F, G, H v areálu VTP Plzeň | T5-11 | T, TF, TG, TH |
68
| Tylova 59 | T59 | TY, TS |
69 23 Alex Konig
| | | |
70 22 Alex Konig
| Koleje armabeton | KA | - |
71
| Koleje Bory | KB | - |
72
| Koleje Lochotín | KL | - |
73
| Koleje klatovská |  KK | - |
74 1 Alex Konig
75 22 Alex Konig
For buildings and room abbrevations was used this source https://ps.zcu.cz/strediska/budovy-plzen.html
76 1 Alex Konig
77 21 Alex Konig
h3. Data timescale
78
79
All availible data was started to be collected at different dates, so therefore there is different amount for each dataset.
80
81
Jis data started to be recorded on 8.4.2018
82
83
Log-ins started to be recorded on 20.10.2011
84
85
Weather data started to be recorded on 30.4.2019
86 20 Alex Konig
87
Since jis and log-in data seems to follow the same trends every recorded year we decided to go off of data we have availible weather data, so from 30.4.2019 forward.
88 4 Alex Konig
89
90 3 Alex Konig
h3. Historical weather data
91
92 1 Alex Konig
Link to data: http://opendata.zcu.cz/Energeticky-dispecink.html
93
94 4 Alex Konig
Data contains:
95
96
* datum_a_cas - date and time, time at which the values were measured with hour accuracy
97
* teplota - average temperature in given time slot (°C)
98 7 Alex Konig
* vitr - average wind speed in given time slot (m/s)
99 2 Alex Konig
* dest - value signifying rain (1) and no rain (0)
100 7 Alex Konig
* svetelnost - average value of luminance (k lux)
101 1 Alex Konig
102 7 Alex Konig
For further processing luminance will be translated to the terms "sunny", "overcast" and "cloudy". In the 2019 data are values between 0 and 83.2k lux.
103 1 Alex Konig
104 8 Alex Konig
Lux values can be understood using the following table:
105 7 Alex Konig
106
|_. Conditions |_. Value (lux) |
107
| Sunlight | 107527 |
108
| Full Daylight	| 10752 |
109
| Overcast Day	| 1075 |
110
| Very Dark Day	| 107 |
111
| Twilight	| 10.8 |
112
| Deep Twilight	| 1.08 |
113
| Full Moon	| 0.108 |
114 1 Alex Konig
| Quarter Moon	| 0.0108 |
115 8 Alex Konig
| Starlight	| 0.0011 |
116 7 Alex Konig
| Overcast Night | 0.0001|
117
118 1 Alex Konig
Source: https://www.engineeringtoolbox.com/light-level-rooms-d_708.html
119 7 Alex Konig
120 8 Alex Konig
However, upon comparing values in data with archived weather predictions it seems more like the following table would be appropriate:
121 7 Alex Konig
122
|_. Conditions |_. Value (k lux) |
123
| Direct sungligt | >60 |
124 1 Alex Konig
| Sunny | 40-60 |
125
| Overcast | 20-40 |
126 24 Alex Konig
| Cloudy | 0-20 |
127 7 Alex Konig
| Night | 0 |
128 4 Alex Konig
129 19 Alex Konig
Used weather archive: https://www.in-pocasi.cz/archiv/archiv.php?historie=2019-12-01&region=9
130 18 Alex Konig
131 1 Alex Konig
More detailed data analysis in [[Weather at ZCU]]
132
133
h3. JIS data
134
135
Link to data: http://opendata.zcu.cz/Snimace-JIS.html
136
137
Data contains:
138
139
* datum_a_cas - timestamp of JIS authentication (accuracy in milliseconds)
140
* pocet_logu - number of authentized users in given time
141
* popis_objektu - description of object according to standard ZČU tagging
142
143
On the linked page there is written that " ... Data about dorms, the entry to laboratories and other spaces with restricted access, informations about university canteen, checkouts in univeristy library, access to copy machines etc can be interesting for students ...". However not all of these places can be found in said data. In data from 2019 are present only 46 different places, and most of them are dorms, parking lots and buffets.
144
145
There is a possibility that in the future the number of logged places will increase, however it is also possible that the data was affected by GDPR and more detailed data now won't be provided for the public anymore.
146 10 Alex Konig
147 24 Alex Konig
Possible solution is to assign provided spaces to buildings. More detailed data analysis of contained data in [[Jis activity - graphs]].
148 12 Alex Konig
149
|_\3. Dorms and gyms |
150 24 Alex Konig
|_. Dorm |_. Building |_. Location |
151
| A1, A2-Hlavni vchod, A3, A2 | KA | on Borská street |
152
| B3-LEVY, B3-LevyVytah, B3-PRAVY, B3-PravyVytah, B3 | KB | on Baarova street |
153
| M16, M14 | KB | on Máchova street |
154
| L1, L2, L1L2-vchod | KL | on Bolevecká street |
155
| L-Posilovna | KL | in Bolevecká dorm | 
156
| KL-Posilovna, K1 | KK | on Klatovská street |
157 12 Alex Konig
158 1 Alex Konig
159 11 Alex Konig
|_\3. Parking lots |
160 25 Alex Konig
|_. Place |_. Building |_. Notes |
161 1 Alex Konig
| Zavora-FEL | FEL | |
162 24 Alex Konig
| Zavora-Kaplirova | ? | on Kaplířova street |
163 1 Alex Konig
| US 005 - závora vjezd, US 005 - mříž vjezd | FAV | |
164 20 Alex Konig
| Zavora-FDU | FDU | |
165 24 Alex Konig
| Parkoviste-vjezd, Parkoviste-vyjezd | all on campus | |
166 12 Alex Konig
| Zavora-NTIS-vjezd, Zavora-NTIS-vyjezd | FAV | |
167 24 Alex Konig
| VC-VJEZD, VC-VYJEZD | S15-40+V27-42 | on Veleslavínova street |
168 27 Alex Konig
| KolaBory-vnejsi, KolaBory-vnitrni | FST+FEK | |
169 24 Alex Konig
| EXT/kola | FST+FEK | |
170 12 Alex Konig
| EXT/kola-B | FAV | |
171 24 Alex Konig
| B3-kolarna | KB | on Baarova street |
172 1 Alex Konig
173 12 Alex Konig
|_\3. Food courts |
174 24 Alex Konig
|_. Name |_. Building |_. Notes |
175 12 Alex Konig
| EP-BUFET | FEL | |
176
| NTIS-BUFET | FAV | |
177 24 Alex Konig
| UV1-Bufet | FST+FEK | |
178
| MenzaKL-vydej | MENZA | |
179
| Menza4-kasa{x}| MENZA | x in range <1, 5> |
180
| Menza1-kasa-l, Menza1-kasa-p | MENZA | |
181 1 Alex Konig
182 12 Alex Konig
|_\3. Study rooms |
183 24 Alex Konig
|_. Room |_. Building |_. Notes |
184
| STUD_VC53 | S15-40+V27-42| on Veleslavínova street |
185
| STUD_KL20, STUD_KL87 | K51 | on Klatovská street |
186
| STUD_PRA1 | SP14+16 | |
187
| STUD_UB113, STUD_UB211 | LIB | in the on campus library |
188
| STUD_ST407 | S15-40+V27-42 | |
189 4 Alex Konig
190
191
h3. WebAuth data
192
193
Link to data: http://opendata.zcu.cz/Autentizacni-system.html
194 3 Alex Konig
195 4 Alex Konig
Data contains:
196 1 Alex Konig
197 4 Alex Konig
* datum - date of access
198 1 Alex Konig
* budova - building tag
199 4 Alex Konig
* hodina_zacatek - start of lecture
200
* hodina_konec - end of lecture
201
* pocet_prihlaseni - number of successfull sign-ins to given computer in given lecture
202 1 Alex Konig
* stroj_hostname - name of specific computer
203
* typ_objektu - type of object (classroom, laboratory, lecture room, other)
204
* ucebna_nazev - specific name of room
205 13 Alex Konig
* vyucovaci_hodina - number of lecture (according to the timetable)
206 4 Alex Konig
207 1 Alex Konig
On the linked page there is written that "... Signing in using orion login and password can also help track sign-ins to computers at ZČU and corresponding activity in computer laboratories ..." however it seems quesstionable if really all computer logins are in this data. Since it contains only 106 different rooms for all of ZČU in data from  the year 2019, which seems suspicious especially since some rooms that we know that they are equipped with computers and are being used (at least sometimes) are not present.
208 18 Alex Konig
209
So, it would be possible to again assign those rooms to the appropriate buldings using the table at the beggining of ZČU open data chapter and go off the assumption that a similar set of students will be attending lessons in the same building (which is often the case at least with KIV lectures).
210 4 Alex Konig
211
More detailed data analysis in [[Login activity at ZCU - graphs]].
212
213 1 Alex Konig
214 4 Alex Konig
h3. Occupancy data
215
216
Link to data: http://opendata.zcu.cz/Obsazeni-mistnosti.html
217
218 12 Alex Konig
Data contains:
219
220
* rok_platnosti - year
221
* budova - building tag
222
* ucebna_nazev - room name
223
* typ_objektu - type of room (učebna/laboratoř/posluchárna/jiné)
224
* kapacita_objektu - maximum capacity of room
225
* obsazeni - number of students enlisted
226
* predmet - abbreviation of timetable action
227
* typ_akce - type of lecture (seminář/přednáška/cvičení)
228
* vyucovaci_hodina - lesson number (according to the timetable)
229
* hodina_zacatek - lesson beggining
230 3 Alex Konig
* hodina_konec - lesson end
231 1 Alex Konig
* semestr - semester (Letní semestr/Zimní semestr)
232
* tyden - week (S(even), L(odd), K(every),J(other))
233
* tyden_v_roce -  week in the year
234 15 Alex Konig
* datum - date
235
236
It seems possible that not all lessons that are taught on ZČU are included in this data. Data from 2019+2020 contains only 1202 unique lesson instances.
237 1 Alex Konig
Also there are some instances without assigned building and room name, however this shouldn't be an issue since lessons are usually looked up by their abbrevation, not by room.
238 15 Alex Konig
How to work with lessons that are not included in these datasets is rather a topic either for [[Prediction models]] or handling user input.
239 1 Alex Konig
240
241
h2. Weather data
242
243
Link to data: http://wttr.in/Plzen,czechia?format=j1
244
245 15 Alex Konig
Data is in json file format and contains detailed weather prediction for Pilsen, CZ. For this application will be usefull mainly the following details:
246 1 Alex Konig
247 17 Alex Konig
Current weather:
248 15 Alex Konig
* localObsDateTime - date and time
249
* cloudcover - amount of clouds (values in range <0-100>)
250
* weatherDesc - weather description
251 17 Alex Konig
* temp_C - temperature (°C)
252 15 Alex Konig
* precipMM - rainfall (mm)
253
* humidity - humidity (values in range <0, 100>)
254
* windspeedKmph - wind (km/h)
255 1 Alex Konig
 
256 15 Alex Konig
Prediction:
257
* avgtempC - average temperature (°C)
258
* date - date
259
further contains hourly prediction for following information
260
* WindGustKmph - wind (km/h)
261 17 Alex Konig
* chanceofrain - chance of rain (0-100%)
262
* chanceofsnow - chance of snow (0-100%)
263 1 Alex Konig
* cloudcover - amount of clouds (values in range <0-100>)
264 15 Alex Konig
* humidity - humidity (values in range <0-100>)
265 1 Alex Konig
266
In current data precipMM and in prediction chance of rain specifies rain value. From cloudcover can be estimated values such as sunny/overcast and cloudy.