Projekt

Obecné

Profil

Data sources » Historie » Verze 17

Alex Konig, 2021-03-29 13:31

1 1 Alex Konig
h1. Data sources
2 2 Alex Konig
3 12 Alex Konig
h2. ZČU open data
4 1 Alex Konig
5 4 Alex Konig
All ZČU data can be downloaded in formats xml, csv and json.
6
7
As discussed in further chapters there are certain complications with data sources not providing sufficient data granuality or amount. However there is a possibility that the data will in future contain more suitable datasets, and such should be at least acknowledged to some degree. However this is more of a topic for [[Prediction models]], where it will be further discussed.
8
9 12 Alex Konig
Table with faculties and room prefixes belonging to those faculties:
10 1 Alex Konig
11 12 Alex Konig
|_. Faculty |_. Abbreviation |_. Room prefix |
12 15 Alex Konig
| Fakulta strojní | FST | UV, UU, UK, UL, UP, UF, UT |
13 12 Alex Konig
| Fakulta ekonomická | FEK | UV, UU, UK, UL, UP, UF |
14
| Fakulta elektrotechnická | FEL | EU, EK, EL, EP, ES, ET, EH, EZ |
15
| Fakulta designu a umění | FDU | LS |
16
| Fakulta filozofická | FF | JJ, RJ, RS, SP, SD, ST, SO |
17
| Fakulta pedagogická | FPE | CH, VC, KL | 
18
| Fakulta ekonomická Cheb | FEK-CH ? | CD |
19 15 Alex Konig
| Fakulta zdravotních studií | FZS | HJ, DD |
20 1 Alex Konig
| Fakulta aplikovaných věd | FAV | UN, UC,US |
21
| Fakulta právnická | FPR | PC, PS |
22 15 Alex Konig
23
Table with "special" buildings:
24
25 16 Alex Konig
|_. Building name |_. Abbreviation |_. Room prefix |
26 14 Alex Konig
| Centrum informatice a výpočetní techniky| CIV | UI |
27
| Univerzitní knihovna ZČU | | UB |
28 1 Alex Konig
| Rektorát ZČU | | UR |
29
| Tylova 59 - currently incative | | TS |
30 15 Alex Konig
| Ředitelství PS a SKM | | KO |
31
| Stavovská unie studentů | | RS |
32
| Nové technologie - výzkumné centrum | | T, TF, TG, TH |
33
| Regionální technologický institut | | UH, UD, UX |
34 14 Alex Konig
35 15 Alex Konig
36 14 Alex Konig
Unassigned room prefixes: TY
37 17 Alex Konig
Unknown location: STUD_PRA1, "Parkoviště"
38 15 Alex Konig
How to assign "special" buidlings (knihovna, ředitelství) to faculties?
39 6 Alex Konig
40 12 Alex Konig
Thorough the data standard university tags are used, however in some cases there is no source to find out what they mean (for example "parkoviště" or "STUD-PRA1")
41 6 Alex Konig
42 12 Alex Konig
For university tags was used this source: https://ps.zcu.cz/strediska/budovy-plzen.html#kampus
43
44 4 Alex Konig
h3. Historical weather data
45
46 3 Alex Konig
Link to data: http://opendata.zcu.cz/Energeticky-dispecink.html
47
48 1 Alex Konig
Data contains:
49
50 4 Alex Konig
* datum_a_cas - date and time, time at which the values were measured with hour accuracy
51
* teplota - average temperature in given time slot (°C)
52
* vitr - average wind speed in given time slot (m/s)
53
* dest - value signifying rain (1) and no rain (0)
54 7 Alex Konig
* svetelnost - average value of luminance (k lux)
55 2 Alex Konig
56 7 Alex Konig
For further processing luminance will be translated to the terms "sunny", "overcast" and "cloudy". In the 2019 data are values between 0 and 83.2k lux.
57 1 Alex Konig
58 7 Alex Konig
Lux values can be understood using the following table:
59 1 Alex Konig
60 8 Alex Konig
|_. Conditions |_. Value (lux) |
61 7 Alex Konig
| Sunlight | 107527 |
62
| Full Daylight	| 10752 |
63
| Overcast Day	| 1075 |
64
| Very Dark Day	| 107 |
65
| Twilight	| 10.8 |
66
| Deep Twilight	| 1.08 |
67
| Full Moon	| 0.108 |
68
| Quarter Moon	| 0.0108 |
69
| Starlight	| 0.0011 |
70 1 Alex Konig
| Overcast Night | 0.0001|
71 8 Alex Konig
72 7 Alex Konig
Source: https://www.engineeringtoolbox.com/light-level-rooms-d_708.html
73
74 1 Alex Konig
However, upon comparing values in data with archived weather predictions it seems more like the following table would be appropriate:
75 7 Alex Konig
76 8 Alex Konig
|_. Conditions |_. Value (k lux) |
77 7 Alex Konig
| Direct sungligt | >60 |
78
| Sunny | 40-60 |
79
| Overcast | 20-40 |
80 1 Alex Konig
| Cloudy | 10-20 |
81 7 Alex Konig
| Night | 0 |
82 8 Alex Konig
83 7 Alex Konig
Used weather archive: https://www.in-pocasi.cz/archiv/archiv.php?historie=2019-12-01&region=9
84 4 Alex Konig
85 1 Alex Konig
h3. JIS data
86
87
Link to data: http://opendata.zcu.cz/Snimace-JIS.html
88
89
Data contains:
90
91
* datum_a_cas - timestamp of JIS authentication (accuracy in milliseconds)
92
* pocet_logu - number of authentized users in given time
93
* popis_objektu - description of object according to standard ZČU tagging
94
95
On the linked page there is written that " ... Data about dorms, the entry to laboratories and other spaces with restricted access, informations about university canteen, checkouts in univeristy library, access to copy machines etc can be interesting for students ...". However not all of these places can be found in said data. In data from 2019 are present only 46 different places, and most of them are dorms, parking lots and buffets.
96
97
There is a possibility that in the future the number of logged places will increase, however it is also possible that the data was affected by GDPR and more detailed data now won't be provided for the public anymore.
98
99 15 Alex Konig
Possible solution is to assign provided spaces to faculties.
100 10 Alex Konig
101 12 Alex Konig
|_\3. Dorms and gyms |
102
| A1, A2-Hlavni vchod, A3   | all | on Borská street |
103
| B3-LEVY | all | on Baarova street |
104
| M16, M14 | all | on Máchova street |
105 1 Alex Konig
| L1, L2, L1L2-vchod | all | on Bolevecká street |
106 17 Alex Konig
| L-Posilovna | none | in Bolevecká dorm | 
107
| KL-Posilovna | none | on Klatovská street |
108 10 Alex Konig
109 12 Alex Konig
110
|_\3. Parking lots |
111 11 Alex Konig
| Zavora-FEL | FEL | |
112 12 Alex Konig
| Zavora-Kaplirova | all | on Kaplířova street |
113
| US 005 - závora vjezd, US 005 - mříž vjezd | FAV | |
114 11 Alex Konig
| Zavora-FDU | FDU | |
115 12 Alex Konig
| Parkoviste-vjezd, Parkoviste-vyjezd | ? | ? |
116
| Zavora-NTIS-vjezd, Zavora-NTIS-vyjezd | FAV | |
117
| VC-VJEZD, VC-VYJEZD | FPE | on Veleslavínova street |
118
| KolaBory-vnejsi, KolaBory-vnitrni | all | |
119
| EXT/kola | FST | |
120
| EXT/kola-B | FAV | |
121
| B3-kolarna | all | on Baarova street |
122 1 Alex Konig
123
|_\3. Food courts |
124 12 Alex Konig
| EP-BUFET | FEL | |
125
| NTIS-BUFET | FAV | |
126
| UV1-Bufet | FEK | |
127
| MenzaKL-vydej |all | |
128 4 Alex Konig
| Menza4-kasa{x}| all | x in range <1, 5> |
129
| Menza1-kasa-l, Menza1-kasa-p | all | |
130
131 12 Alex Konig
|_\3. Study rooms |
132 1 Alex Konig
| STUD_VC53 | FPE | |
133 12 Alex Konig
| STUD_CHEB | FEK-CH | |
134
| STUD_KL20, STUD_KL87 | FPE | |
135 17 Alex Konig
| STUD_PRA1 | FPR | |
136 12 Alex Konig
| STUD_UB113, STUD_UB211 | all | in the on campus library |
137
| STUD_ST407 | FF | |
138 4 Alex Konig
139
140
h3. WebAuth data
141
142
Link to data: http://opendata.zcu.cz/Autentizacni-system.html
143
144
Data contains:
145 3 Alex Konig
146 4 Alex Konig
* datum - date of access
147 1 Alex Konig
* budova - building tag
148 4 Alex Konig
* hodina_zacatek - start of lecture
149 1 Alex Konig
* hodina_konec - end of lecture
150 4 Alex Konig
* pocet_prihlaseni - number of successfull sign-ins to given computer in given lecture
151
* stroj_hostname - name of specific computer
152
* typ_objektu - type of object (classroom, laboratory, lecture room, other)
153 1 Alex Konig
* ucebna_nazev - specific name of room
154
* vyucovaci_hodina - number of lecture (according to the timetable)
155
156 13 Alex Konig
On the linked page there is written that "... Signing in using orion login and password can also help track sign-ins to computers at ZČU and corresponding activity in computer laboratories ..." however it seems quesstionable if really all computer logins are in this data. Since it contains only 106 different rooms for all of ZČU in data from  the year 2019, which seems suspicious especially since some rooms that we know that they are equipped with computers and are being used (at least sometimes) are not present.
157 4 Alex Konig
158 12 Alex Konig
So, it would be possible to again assign those rooms to the appropriate buldings using the table at the beggining of ZČU open data chapter and go off the assumption that a similar set of students will be attending lessons in the same building (which is often the case at least with KIV lectures).
159 4 Alex Konig
160
161
h3. Occupancy data
162 1 Alex Konig
163 4 Alex Konig
Link to data: http://opendata.zcu.cz/Obsazeni-mistnosti.html
164
165
Data contains:
166
167 12 Alex Konig
* rok_platnosti - year
168
* budova - building tag
169
* ucebna_nazev - room name
170
* typ_objektu - type of room (učebna/laboratoř/posluchárna/jiné)
171
* kapacita_objektu - maximum capacity of room
172
* obsazeni - number of students enlisted
173
* predmet - abbreviation of timetable action
174
* typ_akce - type of lecture (seminář/přednáška/cvičení)
175
* vyucovaci_hodina - lesson number (according to the timetable)
176
* hodina_zacatek - lesson beggining
177
* hodina_konec - lesson end
178
* semestr - semester (Letní semestr/Zimní semestr)
179 3 Alex Konig
* tyden - week (S(even), L(odd), K(every),J(other))
180 1 Alex Konig
* tyden_v_roce -  week in the year
181
* datum - date
182
183 15 Alex Konig
It seems possible that not all lessons that are taught on ZČU are included in this data. Data from 2019+2020 contains only 1202 unique lesson instances.
184
Also there are some instances without assigned building and room name, however this shouldn't be an issue since lessons are usually looked up by their abbrevation, not by room.
185
How to work with lessons that are not included in these datasets is rather a topic either for [[Prediction models]] or handling user input.
186 1 Alex Konig
187 15 Alex Konig
188 1 Alex Konig
h2. Weather data
189
190
Link to data: http://wttr.in/Plzen,czechia?format=j1
191
192
Data is in json file format and contains detailed weather prediction for Pilsen, CZ. For this application will be usefull mainly the following details:
193
194 15 Alex Konig
Current weather:
195 1 Alex Konig
* localObsDateTime - date and time
196 17 Alex Konig
* cloudcover - amount of clouds (values in range <0-100>)
197 15 Alex Konig
* weatherDesc - weather description
198
* temp_C - temperature (°C)
199
* precipMM - rainfall (mm)
200 17 Alex Konig
* humidity - humidity (values in range <0, 100>)
201 15 Alex Konig
* windspeedKmph - wind (km/h)
202
 
203
Prediction:
204 1 Alex Konig
* avgtempC - average temperature (°C)
205 15 Alex Konig
* date - date
206
further contains hourly prediction for following information
207
* WindGustKmph - wind (km/h)
208
* chanceofrain - chance of rain (0-100%)
209
* chanceofsnow - chance of snow (0-100%)
210 17 Alex Konig
* cloudcover - amount of clouds (values in range <0-100>)
211
* humidity - humidity (values in range <0-100>)
212 1 Alex Konig
213 15 Alex Konig
In current data precipMM and in prediction chance of rain specifies rain value. From cloudcover can be estimated values such as sunny/overcast and cloudy.