Projekt

Obecné

Profil

Data sources » Historie » Verze 15

Alex Konig, 2021-03-27 17:05

1 1 Alex Konig
h1. Data sources
2 2 Alex Konig
3 12 Alex Konig
h2. ZČU open data
4 1 Alex Konig
5 4 Alex Konig
All ZČU data can be downloaded in formats xml, csv and json.
6
7
As discussed in further chapters there are certain complications with data sources not providing sufficient data granuality or amount. However there is a possibility that the data will in future contain more suitable datasets, and such should be at least acknowledged to some degree. However this is more of a topic for [[Prediction models]], where it will be further discussed.
8
9 12 Alex Konig
Table with faculties and room prefixes belonging to those faculties:
10 1 Alex Konig
11 12 Alex Konig
|_. Faculty |_. Abbreviation |_. Room prefix |
12 15 Alex Konig
| Fakulta strojní | FST | UV, UU, UK, UL, UP, UF, UT |
13 12 Alex Konig
| Fakulta ekonomická | FEK | UV, UU, UK, UL, UP, UF |
14
| Fakulta elektrotechnická | FEL | EU, EK, EL, EP, ES, ET, EH, EZ |
15
| Fakulta designu a umění | FDU | LS |
16
| Fakulta filozofická | FF | JJ, RJ, RS, SP, SD, ST, SO |
17
| Fakulta pedagogická | FPE | CH, VC, KL | 
18
| Fakulta ekonomická Cheb | FEK-CH ? | CD |
19 15 Alex Konig
| Fakulta zdravotních studií | FZS | HJ, DD |
20 1 Alex Konig
| Fakulta aplikovaných věd | FAV | UN, UC,US |
21
| Fakulta právnická | FPR | PC, PS |
22 15 Alex Konig
23
Table with "special" buildings:
24
25
|_. Building name |_. Abbreviation |_. Room prefix
26 14 Alex Konig
| Centrum informatice a výpočetní techniky| CIV | UI |
27
| Univerzitní knihovna ZČU | | UB |
28 1 Alex Konig
| Rektorát ZČU | | UR |
29
| Tylova 59 - currently incative | | TS |
30 15 Alex Konig
| Ředitelství PS a SKM | | KO |
31
| Stavovská unie studentů | | RS |
32
| Nové technologie - výzkumné centrum | | T, TF, TG, TH |
33
| Regionální technologický institut | | UH, UD, UX |
34 14 Alex Konig
35 15 Alex Konig
36 14 Alex Konig
Unassigned room prefixes: TY
37 15 Alex Konig
How to assign "special" buidlings (knihovna, ředitelství) to faculties?
38 6 Alex Konig
39 12 Alex Konig
Thorough the data standard university tags are used, however in some cases there is no source to find out what they mean (for example "parkoviště" or "STUD-PRA1")
40 6 Alex Konig
41 12 Alex Konig
For university tags was used this source: https://ps.zcu.cz/strediska/budovy-plzen.html#kampus
42
43 4 Alex Konig
h3. Historical weather data
44
45 3 Alex Konig
Link to data: http://opendata.zcu.cz/Energeticky-dispecink.html
46
47 1 Alex Konig
Data contains:
48
49 4 Alex Konig
* datum_a_cas - date and time, time at which the values were measured with hour accuracy
50
* teplota - average temperature in given time slot (°C)
51
* vitr - average wind speed in given time slot (m/s)
52
* dest - value signifying rain (1) and no rain (0)
53 7 Alex Konig
* svetelnost - average value of luminance (k lux)
54 2 Alex Konig
55 7 Alex Konig
For further processing luminance will be translated to the terms "sunny", "overcast" and "cloudy". In the 2019 data are values between 0 and 83.2k lux.
56 1 Alex Konig
57 7 Alex Konig
Lux values can be understood using the following table:
58 1 Alex Konig
59 8 Alex Konig
|_. Conditions |_. Value (lux) |
60 7 Alex Konig
| Sunlight | 107527 |
61
| Full Daylight	| 10752 |
62
| Overcast Day	| 1075 |
63
| Very Dark Day	| 107 |
64
| Twilight	| 10.8 |
65
| Deep Twilight	| 1.08 |
66
| Full Moon	| 0.108 |
67
| Quarter Moon	| 0.0108 |
68
| Starlight	| 0.0011 |
69 1 Alex Konig
| Overcast Night | 0.0001|
70 8 Alex Konig
71 7 Alex Konig
Source: https://www.engineeringtoolbox.com/light-level-rooms-d_708.html
72
73 1 Alex Konig
However, upon comparing values in data with archived weather predictions it seems more like the following table would be appropriate:
74 7 Alex Konig
75 8 Alex Konig
|_. Conditions |_. Value (k lux) |
76 7 Alex Konig
| Direct sungligt | >60 |
77
| Sunny | 40-60 |
78
| Overcast | 20-40 |
79 1 Alex Konig
| Cloudy | 10-20 |
80 7 Alex Konig
| Night | 0 |
81 8 Alex Konig
82 7 Alex Konig
Used weather archive: https://www.in-pocasi.cz/archiv/archiv.php?historie=2019-12-01&region=9
83 4 Alex Konig
84 1 Alex Konig
h3. JIS data
85
86
Link to data: http://opendata.zcu.cz/Snimace-JIS.html
87
88
Data contains:
89
90
* datum_a_cas - timestamp of JIS authentication (accuracy in milliseconds)
91
* pocet_logu - number of authentized users in given time
92
* popis_objektu - description of object according to standard ZČU tagging
93
94
On the linked page there is written that " ... Data about dorms, the entry to laboratories and other spaces with restricted access, informations about university canteen, checkouts in univeristy library, access to copy machines etc can be interesting for students ...". However not all of these places can be found in said data. In data from 2019 are present only 46 different places, and most of them are dorms, parking lots and buffets.
95
96
There is a possibility that in the future the number of logged places will increase, however it is also possible that the data was affected by GDPR and more detailed data now won't be provided for the public anymore.
97
98 15 Alex Konig
Possible solution is to assign provided spaces to faculties.
99 10 Alex Konig
100 12 Alex Konig
|_\3. Dorms and gyms |
101
| A1, A2-Hlavni vchod, A3   | all | on Borská street |
102
| B3-LEVY | all | on Baarova street |
103
| M16, M14 | all | on Máchova street |
104
| L1, L2, L1L2-vchod | all | on Bolevecká street |
105
| L-Posilovna | ? | in Bolevecká dorm | 
106
| KL-Posilovna | ? | on Klatovská street |
107 10 Alex Konig
108 12 Alex Konig
109
|_\3. Parking lots |
110 11 Alex Konig
| Zavora-FEL | FEL | |
111 12 Alex Konig
| Zavora-Kaplirova | all | on Kaplířova street |
112
| US 005 - závora vjezd, US 005 - mříž vjezd | FAV | |
113 11 Alex Konig
| Zavora-FDU | FDU | |
114 12 Alex Konig
| Parkoviste-vjezd, Parkoviste-vyjezd | ? | ? |
115
| Zavora-NTIS-vjezd, Zavora-NTIS-vyjezd | FAV | |
116
| VC-VJEZD, VC-VYJEZD | FPE | on Veleslavínova street |
117
| KolaBory-vnejsi, KolaBory-vnitrni | all | |
118
| EXT/kola | FST | |
119
| EXT/kola-B | FAV | |
120
| B3-kolarna | all | on Baarova street |
121 1 Alex Konig
122
|_\3. Food courts |
123 12 Alex Konig
| EP-BUFET | FEL | |
124
| NTIS-BUFET | FAV | |
125
| UV1-Bufet | FEK | |
126
| MenzaKL-vydej |all | |
127 4 Alex Konig
| Menza4-kasa{x}| all | x in range <1, 5> |
128
| Menza1-kasa-l, Menza1-kasa-p | all | |
129
130 12 Alex Konig
|_\3. Study rooms |
131
| STUD_VC53 | FPE | |
132
| STUD_CHEB | FEK-CH | |
133
| STUD_KL20, STUD_KL87 | FPE | |
134
| STUD_PRA1 | ? | |
135
| STUD_UB113, STUD_UB211 | all | in the on campus library |
136
| STUD_ST407 | FF | |
137 4 Alex Konig
138
139
h3. WebAuth data
140
141
Link to data: http://opendata.zcu.cz/Autentizacni-system.html
142
143
Data contains:
144 3 Alex Konig
145 4 Alex Konig
* datum - date of access
146 1 Alex Konig
* budova - building tag
147 4 Alex Konig
* hodina_zacatek - start of lecture
148 1 Alex Konig
* hodina_konec - end of lecture
149 4 Alex Konig
* pocet_prihlaseni - number of successfull sign-ins to given computer in given lecture
150
* stroj_hostname - name of specific computer
151
* typ_objektu - type of object (classroom, laboratory, lecture room, other)
152 1 Alex Konig
* ucebna_nazev - specific name of room
153
* vyucovaci_hodina - number of lecture (according to the timetable)
154
155 13 Alex Konig
On the linked page there is written that "... Signing in using orion login and password can also help track sign-ins to computers at ZČU and corresponding activity in computer laboratories ..." however it seems quesstionable if really all computer logins are in this data. Since it contains only 106 different rooms for all of ZČU in data from  the year 2019, which seems suspicious especially since some rooms that we know that they are equipped with computers and are being used (at least sometimes) are not present.
156 4 Alex Konig
157 12 Alex Konig
So, it would be possible to again assign those rooms to the appropriate buldings using the table at the beggining of ZČU open data chapter and go off the assumption that a similar set of students will be attending lessons in the same building (which is often the case at least with KIV lectures).
158 4 Alex Konig
159
160
h3. Occupancy data
161 1 Alex Konig
162 4 Alex Konig
Link to data: http://opendata.zcu.cz/Obsazeni-mistnosti.html
163
164
Data contains:
165
166 12 Alex Konig
* rok_platnosti - year
167
* budova - building tag
168
* ucebna_nazev - room name
169
* typ_objektu - type of room (učebna/laboratoř/posluchárna/jiné)
170
* kapacita_objektu - maximum capacity of room
171
* obsazeni - number of students enlisted
172
* predmet - abbreviation of timetable action
173
* typ_akce - type of lecture (seminář/přednáška/cvičení)
174
* vyucovaci_hodina - lesson number (according to the timetable)
175
* hodina_zacatek - lesson beggining
176
* hodina_konec - lesson end
177
* semestr - semester (Letní semestr/Zimní semestr)
178 3 Alex Konig
* tyden - week (S(even), L(odd), K(every),J(other))
179 1 Alex Konig
* tyden_v_roce -  week in the year
180
* datum - date
181
182 15 Alex Konig
It seems possible that not all lessons that are taught on ZČU are included in this data. Data from 2019+2020 contains only 1202 unique lesson instances.
183
Also there are some instances without assigned building and room name, however this shouldn't be an issue since lessons are usually looked up by their abbrevation, not by room.
184
How to work with lessons that are not included in these datasets is rather a topic either for [[Prediction models]] or handling user input.
185 1 Alex Konig
186 15 Alex Konig
187 1 Alex Konig
h2. Weather data
188
189
Link to data: http://wttr.in/Plzen,czechia?format=j1
190
191 15 Alex Konig
Data is in json file format and contains detailed weather prediction for Pilsen, CZ. For this application will be usefull mainly the following details:
192 1 Alex Konig
193 15 Alex Konig
Current weather:
194
* localObsDateTime - date and time
195
* cloudcover - amount of clouds <0-100>
196
* weatherDesc - weather description
197
* temp_C - temperature (°C)
198
* precipMM - rainfall (mm)
199
* humidity - humidity <0, 100>
200
* windspeedKmph - wind (km/h)
201
 
202
Prediction:
203
* avgtempC - average temperature (°C)
204
* date - date
205
further contains hourly prediction for following information
206
* WindGustKmph - wind (km/h)
207
* chanceofrain - chance of rain (0-100%)
208
* chanceofsnow - chance of snow (0-100%)
209
* cloudcover - amount of clouds (0-100)
210
* humidity - humidity (0-100)
211 1 Alex Konig
212 15 Alex Konig
In current data precipMM and in prediction chance of rain specifies rain value. From cloudcover can be estimated values such as sunny/overcast and cloudy.