Projekt

Obecné

Profil

Application predicting class attendance based on weather » Historie » Verze 3

Roman Kalivoda, 2021-03-19 11:51
Add design section

1 1 Alex Konig
h1. Application predicting class attendance based on weather
2
3
h2. Data
4
5 3 Roman Kalivoda
The application uses datasets containing historical information about the weather on campus and attendance based on JIS card verifications and historical timetable information
6 1 Alex Konig
* JIS data http://opendata.zcu.cz/Snimace-JIS.html
7
* Timetable data http://opendata.zcu.cz/Obsazeni-mistnosti.html
8
* Weather data http://opendata.zcu.cz/Energeticky-dispecink.html
9
10
-> rozvrh udává kolik lidí tam mělo bejt, plus vzít JISky kolik tam bylo (-> můžu mít procentuelní zastoupení) / ?autentizační systém kolik lidí se přihlásilo na pc?
11
12
h3. Weather
13
14 3 Roman Kalivoda
Weather data for model training contains the following information: date, temperature, wind, rain, light in k lux
15 1 Alex Konig
16
User can input weather values manually, by selecting options from a form
17
* values: temperature, wind, rain, sunny/overcast/partly cloudy
18 3 Roman Kalivoda
There also is an option for data to be automatically downloaded from a server upon request from the user
19 1 Alex Konig
20
Current options for data sources
21
* RSS from yr.no http://www.kanonbra.com/rss/yr_forecast_rss.php?language=en_US&location=%C4%8Ceahkka/Plze%C5%88sk%C3%BD_Kraj/Plze%C5%88
22
* RSS from yahoo weather (might be a problem with authorisation) https://www.yahoo.com/news/weather/czech-republic/plze%C5%88sk%C3%BD/plze%C5%88-796166/
23 3 Roman Kalivoda
* JSON from wttr.in http://wttr.in/Plzen,czechia?format=j1
24 1 Alex Konig
App provides the ability to ask for data from today or days in future, and give hourly time specifics (this time will be then approximated into values morning, noon, afternoon, night)
25
Again the app will use the following values: temperature, wind, rain, sunny/overcast/partly cloudy
26
27
Notes:
28
Values sunny/overcast/partly cloudy will be translated into lux values
29 3 Roman Kalivoda
The temperature will be evaluated with certain tolerance (probably determined experimentally)
30 1 Alex Konig
31
32
h3. Datasets
33
34
Datasets are updated every once in a while with new data. How often update?
35
-> has to trigger re-training the prediction model, probably do not want to update too often.
36
Detect when there's new data, check every day? every x days?
37
38 3 Roman Kalivoda
h2. Design
39
40
h3. The output of the Algorithm
41
42
We need to determine what should be the actual prediction:
43
* A concrete number of students in a class,
44
* information about relative occupancy rate.
45
46 1 Alex Konig
h2. Motivation
47
48
TBD
49
50
h2. Implementation
51
52 3 Roman Kalivoda
The application is a mobile app, possibly WebGL app
53 1 Alex Konig
It is developed in unity which provides more possibilities for export with modifications for given platforms
54
55
- prediction model (pluses and minuses ?)
56
	- neuron network
57
	- bayes