1 |
ebe96ca4
|
Roman Kalivoda
|
//
|
2 |
|
|
// Author: Roman Kalivoda
|
3 |
|
|
//
|
4 |
|
|
|
5 |
|
|
using System;
|
6 |
|
|
using System.Collections.Generic;
|
7 |
|
|
using System.IO;
|
8 |
|
|
using Microsoft.ML;
|
9 |
|
|
using ServerApp.Parser.OutputInfo;
|
10 |
|
|
using ServerApp.Parser.Parsers;
|
11 |
|
|
|
12 |
|
|
namespace ServerApp.Predictor
|
13 |
|
|
{
|
14 |
|
|
/// <summary>
|
15 |
|
|
/// Implentation of the <c>IPredicitionController</c> interface.
|
16 |
|
|
/// </summary>
|
17 |
|
|
class PredictionController : IPredictionController
|
18 |
|
|
{
|
19 |
|
|
/// <summary>
|
20 |
|
|
/// A dictionary for storing trained predictors.
|
21 |
|
|
/// </summary>
|
22 |
|
|
private Dictionary<string, int> buildingsToAreas;
|
23 |
|
|
|
24 |
|
|
private List<IPredictor> predictors;
|
25 |
|
|
|
26 |
|
|
/// <summary>
|
27 |
|
|
/// A reference to a data parser.
|
28 |
|
|
/// </summary>
|
29 |
|
|
private IDataParser dataParser;
|
30 |
|
|
|
31 |
|
|
/// <summary>
|
32 |
|
|
/// A feature extractor instance.
|
33 |
|
|
/// </summary>
|
34 |
|
|
private FeatureExtractor featureExtractor;
|
35 |
|
|
|
36 |
|
|
/// <summary>
|
37 |
|
|
/// Instantiates new prediction controller.
|
38 |
|
|
/// </summary>
|
39 |
|
|
/// <param name="dataParser">A data parser used to get training data.</param>
|
40 |
|
|
public PredictionController(IDataParser dataParser)
|
41 |
|
|
{
|
42 |
|
|
this.dataParser = dataParser;
|
43 |
|
|
this.predictors = new List<IPredictor>();
|
44 |
|
|
this.buildingsToAreas = new Dictionary<string, int>();
|
45 |
|
|
this.featureExtractor = new FeatureExtractor(dataParser, buildingsToAreas);
|
46 |
|
|
|
47 |
|
|
// fill predictors with all available locationKeys
|
48 |
|
|
// TODO Currently all locations use the same predictor. Try dividing locations into subareas with separate predictors.
|
49 |
|
|
var locationKeys = TagInfo.buildings;
|
50 |
|
|
foreach (string key in locationKeys)
|
51 |
|
|
{
|
52 |
|
|
buildingsToAreas.Add(key, 0);
|
53 |
|
|
}
|
54 |
|
|
IPredictor predictor = new NaiveBayesClassifier();
|
55 |
|
|
predictors.Add(predictor);
|
56 |
|
|
}
|
57 |
|
|
public List<string> GetPredictors()
|
58 |
|
|
{
|
59 |
|
|
return new List<string>(buildingsToAreas.Keys);
|
60 |
|
|
}
|
61 |
|
|
|
62 |
|
|
public void Load(string locationKey = null, string path = null)
|
63 |
|
|
{
|
64 |
|
|
if (locationKey is null)
|
65 |
|
|
{
|
66 |
|
|
throw new NotImplementedException();
|
67 |
|
|
}
|
68 |
|
|
else
|
69 |
|
|
{
|
70 |
|
|
throw new NotImplementedException();
|
71 |
|
|
}
|
72 |
|
|
}
|
73 |
|
|
|
74 |
|
|
public IDataView Predict(string locationKey, WeatherInfo weather, DateTime dateTime)
|
75 |
|
|
{
|
76 |
|
|
IEnumerable<ModelInput> data = new List<ModelInput>
|
77 |
|
|
{
|
78 |
|
|
new ModelInput
|
79 |
|
|
{
|
80 |
|
|
Temp = (float)weather.temp,
|
81 |
|
|
}
|
82 |
|
|
};
|
83 |
|
|
return this.predictors[buildingsToAreas[locationKey]].Predict(data);
|
84 |
|
|
}
|
85 |
|
|
|
86 |
|
|
|
87 |
|
|
public void Train(string locationKey = null)
|
88 |
|
|
{
|
89 |
|
|
if (locationKey is null)
|
90 |
|
|
// train all predictors
|
91 |
|
|
{
|
92 |
|
|
// TODO A single predictor is used for all areas, so training is done only once now.
|
93 |
|
|
for (int i = 0; i < this.predictors.Count; i++)
|
94 |
|
|
{
|
95 |
|
|
// TODO change datetimes when parser interface is ready to parse only downloaded data.
|
96 |
|
|
//IEnumerable<ModelInput> data = featureExtractor.PrepareModelInput(i, DateTime.MinValue, DateTime.MaxValue);
|
97 |
|
|
IEnumerable<ModelInput> data = featureExtractor.PrepareModelInput(i, new DateTime(2019, 10, 5), new DateTime(2020, 6, 30));
|
98 |
|
|
this.predictors[i].Fit(data);
|
99 |
|
|
}
|
100 |
|
|
} else
|
101 |
|
|
// train specified predictor only
|
102 |
|
|
{
|
103 |
|
|
throw new NotImplementedException();
|
104 |
|
|
}
|
105 |
|
|
}
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
}
|
109 |
|
|
}
|