Projekt

Obecné

Profil

« Předchozí | Další » 

Revize d358b79e

Přidáno uživatelem Roman Kalivoda před téměř 4 roky(ů)

Re #8832 Label creation

Zobrazit rozdíly:

Server/ServerApp/Predictor/NaiveBayesClassifier.cs
2 2
// Author: Roman Kalivoda
3 3
//
4 4

  
5
using System;
5 6
using System.Collections.Generic;
6 7
using System.Linq;
7 8
using Microsoft.ML;
8
using ServerApp.Parser.OutputInfo;
9 9

  
10 10
namespace ServerApp.Predictor
11 11
{
......
17 17
        /// <summary>
18 18
        /// Context of the ML.NET framework.
19 19
        /// </summary>
20
        private MLContext mlContext;
20
        private MLContext _mlContext;
21 21

  
22 22
        /// <summary>
23 23
        /// Model instance
24 24
        /// </summary>
25
        private ITransformer model;
25
        private ITransformer _trainedModel;
26

  
27
        private PredictionEngine<ModelInput, ModelOutput> _predictionEngine;
28

  
29
        IDataView _trainingDataView;
26 30

  
27 31
        /// <summary>
28 32
        /// Instantiates new <c>MLContext</c>.
29 33
        /// </summary>
30 34
        public NaiveBayesClassifier()
31 35
        {
32
            mlContext = new MLContext();
36
            _mlContext = new MLContext();
33 37
        }
34 38

  
35 39
        public void Fit(IEnumerable<ModelInput> trainInput)
36 40
        {
37
            IDataView trainingDataView = mlContext.Data.LoadFromEnumerable(trainInput);
38
            var pipeline = mlContext.Transforms.Conversion.MapValueToKey(nameof(ModelInput.Label))
39
                .Append(mlContext.Transforms.Concatenate("Features", new[] { "Temp" }))
40
                .Append(mlContext.Transforms.NormalizeMinMax("Features", "Features"))
41
                .Append(mlContext.MulticlassClassification.Trainers.NaiveBayes());
41
            this._trainingDataView = _mlContext.Data.LoadFromEnumerable(trainInput);
42
            var pipeline = _mlContext.Transforms.Conversion.MapValueToKey(nameof(ModelInput.Label))
43
                .Append(_mlContext.Transforms.Concatenate("Features", new[] { "Temp" }))
44
                .Append(_mlContext.Transforms.NormalizeMinMax("Features", "Features"))
45
                .AppendCacheCheckpoint(_mlContext)
46
                .Append(_mlContext.MulticlassClassification.Trainers.NaiveBayes())
47
                .Append(_mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel")); ;
48

  
49
            this._trainedModel = pipeline.Fit(this._trainingDataView);
50
            this._predictionEngine = _mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(this._trainedModel);
42 51

  
43
            this.model =pipeline.Fit(trainingDataView);
52
        }
44 53

  
54
        public string Predict(ModelInput input)
55
        {
56
            return this._predictionEngine.Predict(input).Prediction;
45 57
        }
46 58

  
47
        public IDataView Predict(IEnumerable<ModelInput> input)
59
        public void Evaluate(IEnumerable<ModelInput> modelInputs)
48 60
        {
49
            var data = mlContext.Data.LoadFromEnumerable(input);
50
            IDataView result = model.Transform(data);
51
            return result;
61
            var testDataView = this._mlContext.Data.LoadFromEnumerable(modelInputs);
62
            var testMetrics = _mlContext.MulticlassClassification.Evaluate(_trainedModel.Transform(testDataView));
63

  
64
            Console.WriteLine($"*************************************************************************************************************");
65
            Console.WriteLine($"*       Metrics for Multi-class Classification model - Test Data     ");
66
            Console.WriteLine($"*------------------------------------------------------------------------------------------------------------");
67
            Console.WriteLine($"*       MicroAccuracy:    {testMetrics.MicroAccuracy:0.###}");
68
            Console.WriteLine($"*       MacroAccuracy:    {testMetrics.MacroAccuracy:0.###}");
69
            Console.WriteLine($"*       LogLoss:          {testMetrics.LogLoss:#.###}");
70
            Console.WriteLine($"*       LogLossReduction: {testMetrics.LogLossReduction:#.###}");
71
            Console.WriteLine($"*************************************************************************************************************");
52 72
        }
53 73
    }
54 74
}

Také k dispozici: Unified diff