Projekt

Obecné

Profil

Stáhnout (7.89 KB) Statistiky
| Větev: | Tag: | Revize:
1
//
2
// Author: Roman Kalivoda
3
//
4

    
5
using System;
6
using System.Collections.Generic;
7
using ServerApp.Connection.XMLProtocolHandler;
8
using ServerApp.Parser.Parsers;
9
using Newtonsoft.Json;
10
using ServerApp.WeatherPredictionParser;
11
using ServerApp.Parser.OutputInfo;
12
using System.Reflection;
13
using log4net;
14

    
15
namespace ServerApp.Predictor
16
{
17
    /// <summary>
18
    /// Implentation of the <c>IPredicitionController</c> interface.
19
    /// </summary>
20
    public class PredictionController : IPredictionController
21
    {
22
        private static readonly ILog _log = LogManager.GetLogger(typeof(PredictionController));
23

    
24
        /// <summary>
25
        /// Configuration of the <c>Predictor</c>
26
        /// </summary>
27
        private PredictorConfiguration Configuration;
28

    
29
        private List<IPredictor> Predictors;
30

    
31
        /// <summary>
32
        /// A reference to a data parser.
33
        /// </summary>
34
        private IDataParser DataParser;
35

    
36
        /// <summary>
37
        /// A feature extractor instance.
38
        /// </summary>
39
        private FeatureExtractor FeatureExtractor;
40

    
41
        /// <summary>
42
        /// A weather prediction parser service
43
        /// </summary>
44
        private IJsonParser weatherService;
45

    
46
        /// <summary>
47
        /// Instantiates new prediction controller.
48
        /// </summary>
49
        /// <param name="dataParser">A data parser used to get training data.</param>
50
        public PredictionController(IJsonParser weatherService, IDataParser dataParser, string pathToConfig = null)
51
        {
52
            _log.Info("Constructing a new PredictionController instance.");
53
            this.weatherService = weatherService;
54
            // load config or get the default one
55
            if (pathToConfig is null)
56
            {
57
                pathToConfig = PredictorConfiguration.DEFAULT_CONFIG_PATH;
58
            }
59
            try
60
            {
61
                string json = System.IO.File.ReadAllText(pathToConfig);
62
                this.Configuration = JsonConvert.DeserializeObject<PredictorConfiguration>(json);
63
            }
64
            catch (System.IO.IOException e)
65
            {
66
                Console.WriteLine("Warning: could not find a configuration file, creating a new one:");
67
                Console.WriteLine(e.Message.PadLeft(4));
68
                this.Configuration = PredictorConfiguration.GetDefaultConfig();
69
            }
70

    
71
            this.DataParser = dataParser;
72
            this.Predictors = new List<IPredictor>();
73
            this.FeatureExtractor = new FeatureExtractor(this.DataParser, this.Configuration);
74

    
75
            for (int i = 0; i < this.Configuration.PredictorCount; i++)
76
            {
77
                Predictors.Add(new NaiveBayesClassifier());
78
            }
79
            PredictorConfiguration.SaveConfig(PredictorConfiguration.DEFAULT_CONFIG_PATH, Configuration);
80
        }
81
        public List<string> GetPredictors()
82
        {
83
            return new List<string>(this.Configuration.BuildingsToAreas.Keys);
84
        }
85

    
86
        public void Load(string locationKey = null, string path = null)
87
        {
88
            if (locationKey is null)
89
            {
90
                throw new NotImplementedException();
91
            }
92
            else
93
            {
94
                throw new NotImplementedException();
95
            }
96
        }
97

    
98
        public Response Predict(Request request)
99
        {
100
            _log.Info($"Received a prediction request: endDate={request.useEndDate}, weather={request.useWeather}");
101
            DateTime start = new DateTime(year: request.start.year, month: request.start.month, day: request.start.day, hour: request.start.hour, minute: 0, second: 0);
102
            List<Prediction> predictions = new List<Prediction>();
103
            if (request.useEndDate)
104
            {
105
                DateTime end = new DateTime(year: request.end.year, month: request.end.month, day: request.end.day, hour: request.end.hour, minute: 0, second: 0);
106
                DateTime current = start;
107
                while (current < end)
108
                {
109
                    _log.Debug($"Predicting for date {current.Date.ToShortDateString()}");
110
                    while (current.Hour < Date.MAX_HOUR)
111
                    {
112
                        _log.Debug($"Predicting for time {current.TimeOfDay.ToString()}");
113
                        var prediction = PredictSingle(request, current);
114
                        predictions.Add(prediction);
115
                        current = current.AddHours(this.Configuration.TimeResolution);
116
                    }
117
                    current = current.AddHours(23 - current.Hour + Date.MIN_HOUR);
118
                }
119
            }
120
            else
121
            {
122
                _log.Debug("Predicting for single DateTime.");
123
                predictions.Add(PredictSingle(request, start));
124
            }
125
            var response = new Response();
126
            response.hoursPerSegment = Configuration.TimeResolution;
127
            response.predicitons = predictions.ToArray();
128
            _log.Debug($"Created a response.");
129
            return response;
130
        }
131

    
132
        private Prediction PredictSingle(Request request, DateTime current)
133
        {
134
            double[] predictedValues = new double[this.Configuration.BuildingsToAreas.Count];
135
            string[] predictedLabels = new string[this.Predictors.Count];
136
            for (int i = 0; i < this.Predictors.Count; i++)
137
            {
138
                if (request.useWeather)
139
                {
140
                    _log.Debug("Predicting for requested weather.");
141
                    predictedLabels[i] = this.Predictors[i].Predict(new ModelInput
142
                    {
143
                        Rain = (float)request.rain,
144
                        Temp = (float)request.temperature,
145
                        Wind = (float)request.wind,
146
                        Hour = current.Hour,
147
                        Time = current
148
                    });
149
                }
150
                else
151
                {
152
                    _log.Debug("Retrieving weather info from the weather service.");
153
                    weatherService.ParsePrediction();
154
                    WeatherInfo weatherInfo = weatherService.Current;
155
                    predictedLabels[i] = this.Predictors[i].Predict(new ModelInput
156
                    {
157
                        Rain = weatherInfo.rain,
158
                        Temp = (float)weatherInfo.temp,
159
                        Wind = (float)weatherInfo.wind,
160
                        Hour = current.Hour,
161
                        Time = current
162
                    });
163
                }
164
            }
165
            for (int i = 0; i < predictedValues.Length; i++)
166
            {
167
                predictedValues[i] = this.FeatureExtractor.LabelToRatio(predictedLabels[this.Configuration.BuildingsToAreas[TagInfo.buildings[i]]]) * 100;
168
            }
169

    
170
            Prediction prediction = new Prediction();
171
            prediction.dateTime = new Date
172
            {
173
                year = current.Year,
174
                month = current.Month,
175
                day = current.Day,
176
                hour = current.Hour
177
            };
178
            prediction.predictions = predictedValues;
179
            _log.Debug($"Created prediction for DateTime: {prediction.dateTime}");
180
            return prediction;
181
        }
182

    
183
        public void Train(string locationKey = null)
184
        {
185
            if (locationKey is null)
186
            // train all predictors
187
            {
188
                DataParser.Parse(DateTime.MinValue, DateTime.MaxValue, this.Configuration.TimeResolution, wholeDay: false);
189
                for (int i = 0; i < this.Predictors.Count; i++)
190
                {
191
                    // train on all available data
192
                    List<ModelInput> data = FeatureExtractor.PrepareTrainingInput(i);
193
                    Console.WriteLine("Training predictor with {0} samples.", data.Count);
194
                    this.Predictors[i].Fit(data);
195
                }
196
            }
197
            else
198
            // train specified predictor only
199
            {
200
                throw new NotImplementedException();
201
            }
202
        }
203

    
204

    
205
    }
206
}
(7-7/8)