Projekt

Obecné

Profil

Stáhnout (3.95 KB) Statistiky
| Větev: | Tag: | Revize:
1
//
2
// Author: Roman Kalivoda
3
//
4

    
5
using System;
6
using System.Collections.Generic;
7
using System.Linq;
8
using System.Reflection;
9
using log4net;
10
using Microsoft.ML;
11

    
12
namespace ServerApp.Predictor
13
{
14
    /// <summary>
15
    /// Implementation of the naive Bayes classifier in ML.NET.
16
    /// </summary>
17
    class NaiveBayesClassifier : IPredictor
18
    {
19
        private static readonly ILog _log = LogManager.GetLogger(typeof(NaiveBayesClassifier));
20

    
21
        /// <summary>
22
        /// Context of the ML.NET framework.
23
        /// </summary>
24
        private MLContext _mlContext;
25

    
26
        /// <summary>
27
        /// Model instance
28
        /// </summary>
29
        private ITransformer _trainedModel;
30

    
31
        private PredictionEngine<ModelInput, ModelOutput> _predictionEngine;
32

    
33
        IDataView _trainingDataView;
34

    
35
        /// <summary>
36
        /// Instantiates new <c>MLContext</c>.
37
        /// </summary>
38
        public NaiveBayesClassifier()
39
        {
40
            _mlContext = new MLContext();
41
        }
42

    
43
        public void Fit(IEnumerable<ModelInput> trainInput)
44
        {
45
            this._trainingDataView = _mlContext.Data.LoadFromEnumerable(trainInput);
46
            var pipeline = _mlContext.Transforms.Conversion.MapValueToKey(nameof(ModelInput.Label))
47
                .Append(_mlContext.Transforms.Conversion.ConvertType(nameof(ModelInput.Hour)))
48
                .Append(_mlContext.Transforms.Concatenate("Features", 
49
                new[] { nameof(ModelInput.Temp), nameof(ModelInput.Rain), nameof(ModelInput.Wind), nameof(ModelInput.Hour) }))
50
                .Append(_mlContext.Transforms.NormalizeMeanVariance("Features", useCdf:false))
51
                .AppendCacheCheckpoint(_mlContext)
52
                .Append(_mlContext.MulticlassClassification.Trainers.NaiveBayes())
53
                .Append(_mlContext.Transforms.Conversion.MapKeyToValue(nameof(ModelOutput.PredictedLabel)));
54

    
55
            var cvResults = _mlContext.MulticlassClassification.CrossValidate(this._trainingDataView, pipeline);
56
            _log.Debug("Cross-validated the trained model");
57
            this._trainedModel = cvResults.OrderByDescending(fold => fold.Metrics.MicroAccuracy).Select(fold => fold.Model).First();
58
            _log.Info($"Selected the model #{cvResults.OrderByDescending(fold => fold.Metrics.MicroAccuracy).Select(fold => fold.Fold).First()} as the best.");
59
            this._predictionEngine = _mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(this._trainedModel);
60

    
61
        }
62

    
63
        public string Predict(ModelInput input)
64
        {
65
            _log.Debug($"Predicting for input: {input}");
66
            return this._predictionEngine.Predict(input).PredictedLabel;
67
        }
68

    
69
        public void Evaluate(IEnumerable<ModelInput> modelInputs)
70
        {
71
            var testDataView = this._mlContext.Data.LoadFromEnumerable(modelInputs);
72
            var data = _trainedModel.Transform(testDataView);
73
            var testMetrics = _mlContext.MulticlassClassification.Evaluate(data);
74

    
75
            Console.WriteLine($"*************************************************************************************************************");
76
            Console.WriteLine($"*       Metrics for Multi-class Classification model - Test Data     ");
77
            Console.WriteLine($"*------------------------------------------------------------------------------------------------------------");
78
            Console.WriteLine($"*       MicroAccuracy:    {testMetrics.MicroAccuracy:0.###}");
79
            Console.WriteLine($"*       MacroAccuracy:    {testMetrics.MacroAccuracy:0.###}");
80
            Console.WriteLine($"*       LogLoss:          {testMetrics.LogLoss:#.###}");
81
            Console.WriteLine($"*       LogLossReduction: {testMetrics.LogLossReduction:#.###}");
82
            Console.WriteLine($"*       Confusion Matrix: {testMetrics.ConfusionMatrix.GetFormattedConfusionTable()}");
83
            Console.WriteLine($"*************************************************************************************************************");
84
        }
85
    }
86
}
(6-6/8)