Projekt

Obecné

Profil

Stáhnout (2.5 KB) Statistiky
| Větev: | Tag: | Revize:
1 4977ce53 Roman Kalivoda
//
2
// Author: Roman Kalivoda
3
//
4
5 d358b79e Roman Kalivoda
using System;
6 abfd9c7c Roman Kalivoda
using System.Collections.Generic;
7
using System.Linq;
8 0d31f7e0 Roman Kalivoda
using log4net;
9 abfd9c7c Roman Kalivoda
using Microsoft.ML;
10
11
namespace ServerApp.Predictor
12
{
13 4977ce53 Roman Kalivoda
    /// <summary>
14
    /// Implementation of the naive Bayes classifier in ML.NET.
15
    /// </summary>
16 76072df0 Roman Kalivoda
    class NaiveBayesClassifier : AbstractClassificationPredictor
17 abfd9c7c Roman Kalivoda
    {
18 0d31f7e0 Roman Kalivoda
        private static readonly ILog _log = LogManager.GetLogger(typeof(NaiveBayesClassifier));
19
20 4977ce53 Roman Kalivoda
        /// <summary>
21
        /// Instantiates new <c>MLContext</c>.
22
        /// </summary>
23 abfd9c7c Roman Kalivoda
        public NaiveBayesClassifier()
24
        {
25 76072df0 Roman Kalivoda
            this._mlContext = new MLContext();
26 9fc5fa93 Roman Kalivoda
        }
27
28 0e7b6b11 Roman Kalivoda
        public NaiveBayesClassifier(string filename) : this()
29
        {
30
            DataViewSchema modelSchema;
31
            this._trainedModel = _mlContext.Model.Load(filename, out modelSchema);
32
            // TODO check if the loaded model has valid input and output schema
33
            this._predictionEngine = _mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(this._trainedModel);
34
        }
35
36 76072df0 Roman Kalivoda
        public override void Fit(IEnumerable<ModelInput> trainInput)
37 abfd9c7c Roman Kalivoda
        {
38 d358b79e Roman Kalivoda
            this._trainingDataView = _mlContext.Data.LoadFromEnumerable(trainInput);
39
            var pipeline = _mlContext.Transforms.Conversion.MapValueToKey(nameof(ModelInput.Label))
40 ce0940b5 Roman Kalivoda
                .Append(_mlContext.Transforms.Conversion.ConvertType(nameof(ModelInput.Hour)))
41
                .Append(_mlContext.Transforms.Concatenate("Features", 
42
                new[] { nameof(ModelInput.Temp), nameof(ModelInput.Rain), nameof(ModelInput.Wind), nameof(ModelInput.Hour) }))
43
                .Append(_mlContext.Transforms.NormalizeMeanVariance("Features", useCdf:false))
44 d358b79e Roman Kalivoda
                .AppendCacheCheckpoint(_mlContext)
45
                .Append(_mlContext.MulticlassClassification.Trainers.NaiveBayes())
46 ce0940b5 Roman Kalivoda
                .Append(_mlContext.Transforms.Conversion.MapKeyToValue(nameof(ModelOutput.PredictedLabel)));
47 d358b79e Roman Kalivoda
48 cdeee9f8 Roman Kalivoda
            var cvResults = _mlContext.MulticlassClassification.CrossValidate(this._trainingDataView, pipeline);
49 0d31f7e0 Roman Kalivoda
            _log.Debug("Cross-validated the trained model");
50 cdeee9f8 Roman Kalivoda
            this._trainedModel = cvResults.OrderByDescending(fold => fold.Metrics.MicroAccuracy).Select(fold => fold.Model).First();
51 0d31f7e0 Roman Kalivoda
            _log.Info($"Selected the model #{cvResults.OrderByDescending(fold => fold.Metrics.MicroAccuracy).Select(fold => fold.Fold).First()} as the best.");
52 d358b79e Roman Kalivoda
            this._predictionEngine = _mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(this._trainedModel);
53 662b2404 Roman Kalivoda
54 76072df0 Roman Kalivoda
        }    
55 abfd9c7c Roman Kalivoda
    }
56
}