Projekt

Obecné

Profil

« Předchozí | Další » 

Revize 76072df0

Přidáno uživatelem Roman Kalivoda před téměř 4 roky(ů)

Re #8597 Implementation of AbstractClassificationPredictor, SdcaMEClassifier

Zobrazit rozdíly:

Server/ServerApp/Predictor/NaiveBayesClassifier.cs
13 13
    /// <summary>
14 14
    /// Implementation of the naive Bayes classifier in ML.NET.
15 15
    /// </summary>
16
    class NaiveBayesClassifier : IPredictor
16
    class NaiveBayesClassifier : AbstractClassificationPredictor
17 17
    {
18 18
        private static readonly ILog _log = LogManager.GetLogger(typeof(NaiveBayesClassifier));
19 19

  
20
        /// <summary>
21
        /// Context of the ML.NET framework.
22
        /// </summary>
23
        private MLContext _mlContext;
24

  
25
        /// <summary>
26
        /// Model instance
27
        /// </summary>
28
        private ITransformer _trainedModel;
29

  
30
        private PredictionEngine<ModelInput, ModelOutput> _predictionEngine;
31

  
32
        IDataView _trainingDataView;
33

  
34 20
        /// <summary>
35 21
        /// Instantiates new <c>MLContext</c>.
36 22
        /// </summary>
37 23
        public NaiveBayesClassifier()
38 24
        {
39
            _mlContext = new MLContext();
25
            this._mlContext = new MLContext();
40 26
        }
41 27

  
42 28
        public NaiveBayesClassifier(string filename) : this()
......
47 33
            this._predictionEngine = _mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(this._trainedModel);
48 34
        }
49 35

  
50
        public void Save(string filename)
51
        {
52
            if (this._trainingDataView is null)
53
            {
54
                throw new NullReferenceException("DataView is not set.");
55
            }
56
            if( this._trainedModel is null)
57
            {
58
                throw new NullReferenceException("Trained model instance does not exist. This predictor has not been trained yet.");
59
            }
60
            if(filename is null)
61
            {
62
                throw new ArgumentNullException(nameof(filename));
63
            }
64
            this._mlContext.Model.Save(this._trainedModel, this._trainingDataView.Schema, filename);
65
        }
66

  
67
        public void Fit(IEnumerable<ModelInput> trainInput)
36
        public override void Fit(IEnumerable<ModelInput> trainInput)
68 37
        {
69 38
            this._trainingDataView = _mlContext.Data.LoadFromEnumerable(trainInput);
70 39
            var pipeline = _mlContext.Transforms.Conversion.MapValueToKey(nameof(ModelInput.Label))
......
82 51
            _log.Info($"Selected the model #{cvResults.OrderByDescending(fold => fold.Metrics.MicroAccuracy).Select(fold => fold.Fold).First()} as the best.");
83 52
            this._predictionEngine = _mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(this._trainedModel);
84 53

  
85
        }
86

  
87
        public string Predict(ModelInput input)
88
        {
89
            _log.Debug($"Predicting for input: {input}");
90
            return this._predictionEngine.Predict(input).PredictedLabel;
91
        }
92

  
93
        public void Evaluate(IEnumerable<ModelInput> modelInputs)
94
        {
95
            var testDataView = this._mlContext.Data.LoadFromEnumerable(modelInputs);
96
            var data = _trainedModel.Transform(testDataView);
97
            var testMetrics = _mlContext.MulticlassClassification.Evaluate(data);
98

  
99
            Console.WriteLine($"*************************************************************************************************************");
100
            Console.WriteLine($"*       Metrics for Multi-class Classification model - Test Data     ");
101
            Console.WriteLine($"*------------------------------------------------------------------------------------------------------------");
102
            Console.WriteLine($"*       MicroAccuracy:    {testMetrics.MicroAccuracy:0.###}");
103
            Console.WriteLine($"*       MacroAccuracy:    {testMetrics.MacroAccuracy:0.###}");
104
            Console.WriteLine($"*       LogLoss:          {testMetrics.LogLoss:#.###}");
105
            Console.WriteLine($"*       LogLossReduction: {testMetrics.LogLossReduction:#.###}");
106
            Console.WriteLine($"*       Confusion Matrix: {testMetrics.ConfusionMatrix.GetFormattedConfusionTable()}");
107
            Console.WriteLine($"*************************************************************************************************************");
108
        }
54
        }    
109 55
    }
110 56
}

Také k dispozici: Unified diff