Projekt

Obecné

Profil

Stáhnout (4.89 KB) Statistiky
| Větev: | Tag: | Revize:
1
//
2
// Author: Roman Kalivoda
3
//
4

    
5
using System;
6
using System.Collections.Generic;
7
using System.Linq;
8
using Microsoft.ML;
9

    
10
namespace ServerApp.Predictor
11
{
12
    /// <summary>
13
    /// Implementation of the naive Bayes classifier in ML.NET.
14
    /// </summary>
15
    class NaiveBayesClassifier : IPredictor
16
    {
17
        /// <summary>
18
        /// Context of the ML.NET framework.
19
        /// </summary>
20
        private MLContext _mlContext;
21

    
22
        /// <summary>
23
        /// Model instance
24
        /// </summary>
25
        private ITransformer _trainedModel;
26

    
27
        private PredictionEngine<ModelInput, ModelOutput> _predictionEngine;
28

    
29
        IDataView _trainingDataView;
30

    
31
        /// <summary>
32
        /// Instantiates new <c>MLContext</c>.
33
        /// </summary>
34
        public NaiveBayesClassifier()
35
        {
36
            _mlContext = new MLContext();
37
        }
38

    
39
        public void Fit(IEnumerable<ModelInput> trainInput)
40
        {
41
            this._trainingDataView = _mlContext.Data.LoadFromEnumerable(trainInput);
42
            var pipeline = _mlContext.Transforms.Conversion.MapValueToKey(nameof(ModelInput.Label))
43
                .Append(_mlContext.Transforms.Conversion.ConvertType(nameof(ModelInput.Hour)))
44
                .Append(_mlContext.Transforms.Concatenate("Features", 
45
                new[] { nameof(ModelInput.Temp), nameof(ModelInput.Rain), nameof(ModelInput.Wind), nameof(ModelInput.Hour) }))
46
                .Append(_mlContext.Transforms.NormalizeMeanVariance("Features", useCdf:false))
47
                .AppendCacheCheckpoint(_mlContext)
48
                .Append(_mlContext.MulticlassClassification.Trainers.NaiveBayes())
49
                .Append(_mlContext.Transforms.Conversion.MapKeyToValue(nameof(ModelOutput.PredictedLabel)));
50

    
51
            var cvResults = _mlContext.MulticlassClassification.CrossValidate(this._trainingDataView, pipeline);
52
            foreach (var result in cvResults)
53
            {
54
                var testMetrics = result.Metrics;
55
                Console.WriteLine($"*************************************************************************************************************");
56
                Console.WriteLine($"*       Metrics for Multi-class Classification model - Model #{result.Fold}    ");
57
                Console.WriteLine($"*------------------------------------------------------------------------------------------------------------");
58
                Console.WriteLine($"*       MicroAccuracy:    {testMetrics.MicroAccuracy:0.###}");
59
                Console.WriteLine($"*       MacroAccuracy:    {testMetrics.MacroAccuracy:0.###}");
60
                Console.WriteLine($"*       LogLoss:          {testMetrics.LogLoss:#.###}");
61
                Console.WriteLine($"*       LogLossReduction: {testMetrics.LogLossReduction:#.###}");
62
                Console.WriteLine($"*       Confusion Matrix: {testMetrics.ConfusionMatrix.GetFormattedConfusionTable()}");
63
                Console.WriteLine($"*************************************************************************************************************");
64
            }
65
            this._trainedModel = cvResults.OrderByDescending(fold => fold.Metrics.MicroAccuracy).Select(fold => fold.Model).First();
66
            Console.WriteLine($"Selected the model #{cvResults.OrderByDescending(fold => fold.Metrics.MicroAccuracy).Select(fold => fold.Fold).First()} as the best.");
67
            this._predictionEngine = _mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(this._trainedModel);
68

    
69
        }
70

    
71
        public string Predict(ModelInput input)
72
        {
73
            return this._predictionEngine.Predict(input).PredictedLabel;
74
        }
75

    
76
        public void Evaluate(IEnumerable<ModelInput> modelInputs)
77
        {
78
            var testDataView = this._mlContext.Data.LoadFromEnumerable(modelInputs);
79
            var data = _trainedModel.Transform(testDataView);
80
            var testMetrics = _mlContext.MulticlassClassification.Evaluate(data);
81

    
82
            Console.WriteLine($"*************************************************************************************************************");
83
            Console.WriteLine($"*       Metrics for Multi-class Classification model - Test Data     ");
84
            Console.WriteLine($"*------------------------------------------------------------------------------------------------------------");
85
            Console.WriteLine($"*       MicroAccuracy:    {testMetrics.MicroAccuracy:0.###}");
86
            Console.WriteLine($"*       MacroAccuracy:    {testMetrics.MacroAccuracy:0.###}");
87
            Console.WriteLine($"*       LogLoss:          {testMetrics.LogLoss:#.###}");
88
            Console.WriteLine($"*       LogLossReduction: {testMetrics.LogLossReduction:#.###}");
89
            Console.WriteLine($"*       Confusion Matrix: {testMetrics.ConfusionMatrix.GetFormattedConfusionTable()}");
90
            Console.WriteLine($"*************************************************************************************************************");
91
        }
92
    }
93
}
(6-6/8)