1
|
//
|
2
|
// Author: Roman Kalivoda
|
3
|
//
|
4
|
|
5
|
using System;
|
6
|
using System.Collections.Generic;
|
7
|
using System.Linq;
|
8
|
using System.Text;
|
9
|
using System.Threading.Tasks;
|
10
|
using Microsoft.ML;
|
11
|
using Microsoft.ML.Data;
|
12
|
using ServerApp.Parser.OutputInfo;
|
13
|
|
14
|
namespace ServerApp.Predictor
|
15
|
{
|
16
|
/// <summary>
|
17
|
/// Implementation of the naive Bayes classifier in ML.NET.
|
18
|
/// </summary>
|
19
|
class NaiveBayesClassifier : IPredictor
|
20
|
{
|
21
|
/// <summary>
|
22
|
/// Context of the ML.NET framework.
|
23
|
/// </summary>
|
24
|
private MLContext mlContext;
|
25
|
|
26
|
/// <summary>
|
27
|
/// Model instance
|
28
|
/// </summary>
|
29
|
private ITransformer model;
|
30
|
|
31
|
/// <summary>
|
32
|
/// Instantiates new <c>MLContext</c>.
|
33
|
/// </summary>
|
34
|
public NaiveBayesClassifier()
|
35
|
{
|
36
|
mlContext = new MLContext();
|
37
|
|
38
|
}
|
39
|
|
40
|
/// <summary>
|
41
|
/// Extracts list of feature vectors from parsed info objects.
|
42
|
/// </summary>
|
43
|
/// <param name="weatherInfos">List of weather info objects.</param>
|
44
|
/// <param name="activityInfos">List of info objects about activities at the site.</param>
|
45
|
/// <returns>A list of feature vectors for model training.</returns>
|
46
|
public IEnumerable<ModelInput> ExtractModelInput(List<WeatherInfo> weatherInfos, List<ActivityInfo> activityInfos)
|
47
|
{
|
48
|
return weatherInfos.Select(e => new ModelInput(){
|
49
|
Temp = (float)e.temp,
|
50
|
Label = e.temp > 15.0 ? "Full" : "Empty",
|
51
|
}).ToList();
|
52
|
}
|
53
|
|
54
|
public void Fit(IEnumerable<ModelInput> trainInput)
|
55
|
{
|
56
|
IDataView trainingDataView = mlContext.Data.LoadFromEnumerable(trainInput);
|
57
|
var dataProcessPipeline = mlContext.Transforms.Conversion.MapValueToKey(nameof(ModelInput.Label))
|
58
|
.Append(mlContext.Transforms.Concatenate("Features", new[] { "temp" })
|
59
|
.Append(mlContext.Transforms.NormalizeMinMax("Features", "Features")));
|
60
|
var trainer = mlContext.MulticlassClassification.Trainers.NaiveBayes();
|
61
|
var traininingPipeline = dataProcessPipeline.Append(trainer)
|
62
|
.Append(mlContext.Transforms.Conversion.MapKeyToValue("prediction", "PredictedLabel"));
|
63
|
|
64
|
this.model = traininingPipeline.Fit(trainingDataView);
|
65
|
|
66
|
}
|
67
|
|
68
|
public IDataView Predict(IEnumerable<ModelInput> input)
|
69
|
{
|
70
|
var data = mlContext.Data.LoadFromEnumerable(input);
|
71
|
IDataView result = model.Transform(data);
|
72
|
return result;
|
73
|
}
|
74
|
}
|
75
|
}
|