Projekt

Obecné

Profil

Stáhnout (3 KB) Statistiky
| Větev: | Tag: | Revize:
1
//
2
// Author: Roman Kalivoda
3
//
4

    
5
using System;
6
using System.Collections.Generic;
7
using System.Linq;
8
using Microsoft.ML;
9

    
10
namespace ServerApp.Predictor
11
{
12
    /// <summary>
13
    /// Implementation of the naive Bayes classifier in ML.NET.
14
    /// </summary>
15
    class NaiveBayesClassifier : IPredictor
16
    {
17
        /// <summary>
18
        /// Context of the ML.NET framework.
19
        /// </summary>
20
        private MLContext _mlContext;
21

    
22
        /// <summary>
23
        /// Model instance
24
        /// </summary>
25
        private ITransformer _trainedModel;
26

    
27
        private PredictionEngine<ModelInput, ModelOutput> _predictionEngine;
28

    
29
        IDataView _trainingDataView;
30

    
31
        /// <summary>
32
        /// Instantiates new <c>MLContext</c>.
33
        /// </summary>
34
        public NaiveBayesClassifier()
35
        {
36
            _mlContext = new MLContext();
37
        }
38

    
39
        public void Fit(IEnumerable<ModelInput> trainInput)
40
        {
41
            this._trainingDataView = _mlContext.Data.LoadFromEnumerable(trainInput);
42
            var pipeline = _mlContext.Transforms.Conversion.MapValueToKey(nameof(ModelInput.Label))
43
                .Append(_mlContext.Transforms.Concatenate("Features", new[] { "Temp" }))
44
                .Append(_mlContext.Transforms.NormalizeMinMax("Features", "Features"))
45
                .AppendCacheCheckpoint(_mlContext)
46
                .Append(_mlContext.MulticlassClassification.Trainers.NaiveBayes())
47
                .Append(_mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel")); ;
48

    
49
            this._trainedModel = pipeline.Fit(this._trainingDataView);
50
            this._predictionEngine = _mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(this._trainedModel);
51

    
52
        }
53

    
54
        public string Predict(ModelInput input)
55
        {
56
            return this._predictionEngine.Predict(input).Prediction;
57
        }
58

    
59
        public void Evaluate(IEnumerable<ModelInput> modelInputs)
60
        {
61
            var testDataView = this._mlContext.Data.LoadFromEnumerable(modelInputs);
62
            var testMetrics = _mlContext.MulticlassClassification.Evaluate(_trainedModel.Transform(testDataView));
63

    
64
            Console.WriteLine($"*************************************************************************************************************");
65
            Console.WriteLine($"*       Metrics for Multi-class Classification model - Test Data     ");
66
            Console.WriteLine($"*------------------------------------------------------------------------------------------------------------");
67
            Console.WriteLine($"*       MicroAccuracy:    {testMetrics.MicroAccuracy:0.###}");
68
            Console.WriteLine($"*       MacroAccuracy:    {testMetrics.MacroAccuracy:0.###}");
69
            Console.WriteLine($"*       LogLoss:          {testMetrics.LogLoss:#.###}");
70
            Console.WriteLine($"*       LogLossReduction: {testMetrics.LogLossReduction:#.###}");
71
            Console.WriteLine($"*************************************************************************************************************");
72
        }
73
    }
74
}
(6-6/7)