Projekt

Obecné

Profil

Stáhnout (4.33 KB) Statistiky
| Větev: | Tag: | Revize:
1 4977ce53 Roman Kalivoda
//
2
// Author: Roman Kalivoda
3
//
4
5 d358b79e Roman Kalivoda
using System;
6 abfd9c7c Roman Kalivoda
using System.Collections.Generic;
7
using System.Linq;
8 0d31f7e0 Roman Kalivoda
using log4net;
9 abfd9c7c Roman Kalivoda
using Microsoft.ML;
10
11
namespace ServerApp.Predictor
12
{
13 4977ce53 Roman Kalivoda
    /// <summary>
14
    /// Implementation of the naive Bayes classifier in ML.NET.
15
    /// </summary>
16 abfd9c7c Roman Kalivoda
    class NaiveBayesClassifier : IPredictor
17
    {
18 0d31f7e0 Roman Kalivoda
        private static readonly ILog _log = LogManager.GetLogger(typeof(NaiveBayesClassifier));
19
20 4977ce53 Roman Kalivoda
        /// <summary>
21
        /// Context of the ML.NET framework.
22
        /// </summary>
23 d358b79e Roman Kalivoda
        private MLContext _mlContext;
24 abfd9c7c Roman Kalivoda
25 4977ce53 Roman Kalivoda
        /// <summary>
26
        /// Model instance
27
        /// </summary>
28 d358b79e Roman Kalivoda
        private ITransformer _trainedModel;
29
30
        private PredictionEngine<ModelInput, ModelOutput> _predictionEngine;
31
32
        IDataView _trainingDataView;
33 9fc5fa93 Roman Kalivoda
34 4977ce53 Roman Kalivoda
        /// <summary>
35
        /// Instantiates new <c>MLContext</c>.
36
        /// </summary>
37 abfd9c7c Roman Kalivoda
        public NaiveBayesClassifier()
38
        {
39 d358b79e Roman Kalivoda
            _mlContext = new MLContext();
40 9fc5fa93 Roman Kalivoda
        }
41
42 0e7b6b11 Roman Kalivoda
        public NaiveBayesClassifier(string filename) : this()
43
        {
44
            DataViewSchema modelSchema;
45
            this._trainedModel = _mlContext.Model.Load(filename, out modelSchema);
46
            // TODO check if the loaded model has valid input and output schema
47
            this._predictionEngine = _mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(this._trainedModel);
48
        }
49
50 4977ce53 Roman Kalivoda
        public void Fit(IEnumerable<ModelInput> trainInput)
51 abfd9c7c Roman Kalivoda
        {
52 d358b79e Roman Kalivoda
            this._trainingDataView = _mlContext.Data.LoadFromEnumerable(trainInput);
53
            var pipeline = _mlContext.Transforms.Conversion.MapValueToKey(nameof(ModelInput.Label))
54 ce0940b5 Roman Kalivoda
                .Append(_mlContext.Transforms.Conversion.ConvertType(nameof(ModelInput.Hour)))
55
                .Append(_mlContext.Transforms.Concatenate("Features", 
56
                new[] { nameof(ModelInput.Temp), nameof(ModelInput.Rain), nameof(ModelInput.Wind), nameof(ModelInput.Hour) }))
57
                .Append(_mlContext.Transforms.NormalizeMeanVariance("Features", useCdf:false))
58 d358b79e Roman Kalivoda
                .AppendCacheCheckpoint(_mlContext)
59
                .Append(_mlContext.MulticlassClassification.Trainers.NaiveBayes())
60 ce0940b5 Roman Kalivoda
                .Append(_mlContext.Transforms.Conversion.MapKeyToValue(nameof(ModelOutput.PredictedLabel)));
61 d358b79e Roman Kalivoda
62 cdeee9f8 Roman Kalivoda
            var cvResults = _mlContext.MulticlassClassification.CrossValidate(this._trainingDataView, pipeline);
63 0d31f7e0 Roman Kalivoda
            _log.Debug("Cross-validated the trained model");
64 cdeee9f8 Roman Kalivoda
            this._trainedModel = cvResults.OrderByDescending(fold => fold.Metrics.MicroAccuracy).Select(fold => fold.Model).First();
65 0d31f7e0 Roman Kalivoda
            _log.Info($"Selected the model #{cvResults.OrderByDescending(fold => fold.Metrics.MicroAccuracy).Select(fold => fold.Fold).First()} as the best.");
66 d358b79e Roman Kalivoda
            this._predictionEngine = _mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(this._trainedModel);
67 662b2404 Roman Kalivoda
68 d358b79e Roman Kalivoda
        }
69 9fc5fa93 Roman Kalivoda
70 d358b79e Roman Kalivoda
        public string Predict(ModelInput input)
71
        {
72 0d31f7e0 Roman Kalivoda
            _log.Debug($"Predicting for input: {input}");
73 60a60164 Roman Kalivoda
            return this._predictionEngine.Predict(input).PredictedLabel;
74 abfd9c7c Roman Kalivoda
        }
75
76 d358b79e Roman Kalivoda
        public void Evaluate(IEnumerable<ModelInput> modelInputs)
77 abfd9c7c Roman Kalivoda
        {
78 d358b79e Roman Kalivoda
            var testDataView = this._mlContext.Data.LoadFromEnumerable(modelInputs);
79 ce0940b5 Roman Kalivoda
            var data = _trainedModel.Transform(testDataView);
80
            var testMetrics = _mlContext.MulticlassClassification.Evaluate(data);
81 d358b79e Roman Kalivoda
82
            Console.WriteLine($"*************************************************************************************************************");
83
            Console.WriteLine($"*       Metrics for Multi-class Classification model - Test Data     ");
84
            Console.WriteLine($"*------------------------------------------------------------------------------------------------------------");
85
            Console.WriteLine($"*       MicroAccuracy:    {testMetrics.MicroAccuracy:0.###}");
86
            Console.WriteLine($"*       MacroAccuracy:    {testMetrics.MacroAccuracy:0.###}");
87
            Console.WriteLine($"*       LogLoss:          {testMetrics.LogLoss:#.###}");
88
            Console.WriteLine($"*       LogLossReduction: {testMetrics.LogLossReduction:#.###}");
89 ce0940b5 Roman Kalivoda
            Console.WriteLine($"*       Confusion Matrix: {testMetrics.ConfusionMatrix.GetFormattedConfusionTable()}");
90 d358b79e Roman Kalivoda
            Console.WriteLine($"*************************************************************************************************************");
91 abfd9c7c Roman Kalivoda
        }
92
    }
93
}