Projekt

Obecné

Profil

Stáhnout (3.95 KB) Statistiky
| Větev: | Tag: | Revize:
1 4977ce53 Roman Kalivoda
//
2
// Author: Roman Kalivoda
3
//
4
5 d358b79e Roman Kalivoda
using System;
6 abfd9c7c Roman Kalivoda
using System.Collections.Generic;
7
using System.Linq;
8 0d31f7e0 Roman Kalivoda
using System.Reflection;
9
using log4net;
10 abfd9c7c Roman Kalivoda
using Microsoft.ML;
11
12
namespace ServerApp.Predictor
13
{
14 4977ce53 Roman Kalivoda
    /// <summary>
15
    /// Implementation of the naive Bayes classifier in ML.NET.
16
    /// </summary>
17 abfd9c7c Roman Kalivoda
    class NaiveBayesClassifier : IPredictor
18
    {
19 0d31f7e0 Roman Kalivoda
        private static readonly ILog _log = LogManager.GetLogger(typeof(NaiveBayesClassifier));
20
21 4977ce53 Roman Kalivoda
        /// <summary>
22
        /// Context of the ML.NET framework.
23
        /// </summary>
24 d358b79e Roman Kalivoda
        private MLContext _mlContext;
25 abfd9c7c Roman Kalivoda
26 4977ce53 Roman Kalivoda
        /// <summary>
27
        /// Model instance
28
        /// </summary>
29 d358b79e Roman Kalivoda
        private ITransformer _trainedModel;
30
31
        private PredictionEngine<ModelInput, ModelOutput> _predictionEngine;
32
33
        IDataView _trainingDataView;
34 9fc5fa93 Roman Kalivoda
35 4977ce53 Roman Kalivoda
        /// <summary>
36
        /// Instantiates new <c>MLContext</c>.
37
        /// </summary>
38 abfd9c7c Roman Kalivoda
        public NaiveBayesClassifier()
39
        {
40 d358b79e Roman Kalivoda
            _mlContext = new MLContext();
41 9fc5fa93 Roman Kalivoda
        }
42
43 4977ce53 Roman Kalivoda
        public void Fit(IEnumerable<ModelInput> trainInput)
44 abfd9c7c Roman Kalivoda
        {
45 d358b79e Roman Kalivoda
            this._trainingDataView = _mlContext.Data.LoadFromEnumerable(trainInput);
46
            var pipeline = _mlContext.Transforms.Conversion.MapValueToKey(nameof(ModelInput.Label))
47 cdeee9f8 Roman Kalivoda
                .Append(_mlContext.Transforms.Conversion.ConvertType(nameof(ModelInput.Hour)))
48
                .Append(_mlContext.Transforms.Concatenate("Features", 
49
                new[] { nameof(ModelInput.Temp), nameof(ModelInput.Rain), nameof(ModelInput.Wind), nameof(ModelInput.Hour) }))
50 870cd163 Roman Kalivoda
                .Append(_mlContext.Transforms.NormalizeMeanVariance("Features", useCdf:false))
51 d358b79e Roman Kalivoda
                .AppendCacheCheckpoint(_mlContext)
52
                .Append(_mlContext.MulticlassClassification.Trainers.NaiveBayes())
53 60a60164 Roman Kalivoda
                .Append(_mlContext.Transforms.Conversion.MapKeyToValue(nameof(ModelOutput.PredictedLabel)));
54 d358b79e Roman Kalivoda
55 cdeee9f8 Roman Kalivoda
            var cvResults = _mlContext.MulticlassClassification.CrossValidate(this._trainingDataView, pipeline);
56 0d31f7e0 Roman Kalivoda
            _log.Debug("Cross-validated the trained model");
57 cdeee9f8 Roman Kalivoda
            this._trainedModel = cvResults.OrderByDescending(fold => fold.Metrics.MicroAccuracy).Select(fold => fold.Model).First();
58 0d31f7e0 Roman Kalivoda
            _log.Info($"Selected the model #{cvResults.OrderByDescending(fold => fold.Metrics.MicroAccuracy).Select(fold => fold.Fold).First()} as the best.");
59 d358b79e Roman Kalivoda
            this._predictionEngine = _mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(this._trainedModel);
60 662b2404 Roman Kalivoda
61 d358b79e Roman Kalivoda
        }
62 9fc5fa93 Roman Kalivoda
63 d358b79e Roman Kalivoda
        public string Predict(ModelInput input)
64
        {
65 0d31f7e0 Roman Kalivoda
            _log.Debug($"Predicting for input: {input}");
66 60a60164 Roman Kalivoda
            return this._predictionEngine.Predict(input).PredictedLabel;
67 abfd9c7c Roman Kalivoda
        }
68
69 d358b79e Roman Kalivoda
        public void Evaluate(IEnumerable<ModelInput> modelInputs)
70 abfd9c7c Roman Kalivoda
        {
71 d358b79e Roman Kalivoda
            var testDataView = this._mlContext.Data.LoadFromEnumerable(modelInputs);
72 60a60164 Roman Kalivoda
            var data = _trainedModel.Transform(testDataView);
73
            var testMetrics = _mlContext.MulticlassClassification.Evaluate(data);
74 d358b79e Roman Kalivoda
75
            Console.WriteLine($"*************************************************************************************************************");
76
            Console.WriteLine($"*       Metrics for Multi-class Classification model - Test Data     ");
77
            Console.WriteLine($"*------------------------------------------------------------------------------------------------------------");
78
            Console.WriteLine($"*       MicroAccuracy:    {testMetrics.MicroAccuracy:0.###}");
79
            Console.WriteLine($"*       MacroAccuracy:    {testMetrics.MacroAccuracy:0.###}");
80
            Console.WriteLine($"*       LogLoss:          {testMetrics.LogLoss:#.###}");
81
            Console.WriteLine($"*       LogLossReduction: {testMetrics.LogLossReduction:#.###}");
82 cdeee9f8 Roman Kalivoda
            Console.WriteLine($"*       Confusion Matrix: {testMetrics.ConfusionMatrix.GetFormattedConfusionTable()}");
83 d358b79e Roman Kalivoda
            Console.WriteLine($"*************************************************************************************************************");
84 abfd9c7c Roman Kalivoda
        }
85
    }
86
}