1
|
/*
|
2
|
* big.js v5.2.2
|
3
|
* A small, fast, easy-to-use library for arbitrary-precision decimal arithmetic.
|
4
|
* Copyright (c) 2018 Michael Mclaughlin <M8ch88l@gmail.com>
|
5
|
* https://github.com/MikeMcl/big.js/LICENCE
|
6
|
*/
|
7
|
|
8
|
|
9
|
/************************************** EDITABLE DEFAULTS *****************************************/
|
10
|
|
11
|
|
12
|
// The default values below must be integers within the stated ranges.
|
13
|
|
14
|
/*
|
15
|
* The maximum number of decimal places (DP) of the results of operations involving division:
|
16
|
* div and sqrt, and pow with negative exponents.
|
17
|
*/
|
18
|
var DP = 20, // 0 to MAX_DP
|
19
|
|
20
|
/*
|
21
|
* The rounding mode (RM) used when rounding to the above decimal places.
|
22
|
*
|
23
|
* 0 Towards zero (i.e. truncate, no rounding). (ROUND_DOWN)
|
24
|
* 1 To nearest neighbour. If equidistant, round up. (ROUND_HALF_UP)
|
25
|
* 2 To nearest neighbour. If equidistant, to even. (ROUND_HALF_EVEN)
|
26
|
* 3 Away from zero. (ROUND_UP)
|
27
|
*/
|
28
|
RM = 1, // 0, 1, 2 or 3
|
29
|
|
30
|
// The maximum value of DP and Big.DP.
|
31
|
MAX_DP = 1E6, // 0 to 1000000
|
32
|
|
33
|
// The maximum magnitude of the exponent argument to the pow method.
|
34
|
MAX_POWER = 1E6, // 1 to 1000000
|
35
|
|
36
|
/*
|
37
|
* The negative exponent (NE) at and beneath which toString returns exponential notation.
|
38
|
* (JavaScript numbers: -7)
|
39
|
* -1000000 is the minimum recommended exponent value of a Big.
|
40
|
*/
|
41
|
NE = -7, // 0 to -1000000
|
42
|
|
43
|
/*
|
44
|
* The positive exponent (PE) at and above which toString returns exponential notation.
|
45
|
* (JavaScript numbers: 21)
|
46
|
* 1000000 is the maximum recommended exponent value of a Big.
|
47
|
* (This limit is not enforced or checked.)
|
48
|
*/
|
49
|
PE = 21, // 0 to 1000000
|
50
|
|
51
|
|
52
|
/**************************************************************************************************/
|
53
|
|
54
|
|
55
|
// Error messages.
|
56
|
NAME = '[big.js] ',
|
57
|
INVALID = NAME + 'Invalid ',
|
58
|
INVALID_DP = INVALID + 'decimal places',
|
59
|
INVALID_RM = INVALID + 'rounding mode',
|
60
|
DIV_BY_ZERO = NAME + 'Division by zero',
|
61
|
|
62
|
// The shared prototype object.
|
63
|
P = {},
|
64
|
UNDEFINED = void 0,
|
65
|
NUMERIC = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i;
|
66
|
|
67
|
|
68
|
/*
|
69
|
* Create and return a Big constructor.
|
70
|
*
|
71
|
*/
|
72
|
function _Big_() {
|
73
|
|
74
|
/*
|
75
|
* The Big constructor and exported function.
|
76
|
* Create and return a new instance of a Big number object.
|
77
|
*
|
78
|
* n {number|string|Big} A numeric value.
|
79
|
*/
|
80
|
function Big(n) {
|
81
|
var x = this;
|
82
|
|
83
|
// Enable constructor usage without new.
|
84
|
if (!(x instanceof Big)) return n === UNDEFINED ? _Big_() : new Big(n);
|
85
|
|
86
|
// Duplicate.
|
87
|
if (n instanceof Big) {
|
88
|
x.s = n.s;
|
89
|
x.e = n.e;
|
90
|
x.c = n.c.slice();
|
91
|
} else {
|
92
|
parse(x, n);
|
93
|
}
|
94
|
|
95
|
/*
|
96
|
* Retain a reference to this Big constructor, and shadow Big.prototype.constructor which
|
97
|
* points to Object.
|
98
|
*/
|
99
|
x.constructor = Big;
|
100
|
}
|
101
|
|
102
|
Big.prototype = P;
|
103
|
Big.DP = DP;
|
104
|
Big.RM = RM;
|
105
|
Big.NE = NE;
|
106
|
Big.PE = PE;
|
107
|
Big.version = '5.2.2';
|
108
|
|
109
|
return Big;
|
110
|
}
|
111
|
|
112
|
|
113
|
/*
|
114
|
* Parse the number or string value passed to a Big constructor.
|
115
|
*
|
116
|
* x {Big} A Big number instance.
|
117
|
* n {number|string} A numeric value.
|
118
|
*/
|
119
|
function parse(x, n) {
|
120
|
var e, i, nl;
|
121
|
|
122
|
// Minus zero?
|
123
|
if (n === 0 && 1 / n < 0) n = '-0';
|
124
|
else if (!NUMERIC.test(n += '')) throw Error(INVALID + 'number');
|
125
|
|
126
|
// Determine sign.
|
127
|
x.s = n.charAt(0) == '-' ? (n = n.slice(1), -1) : 1;
|
128
|
|
129
|
// Decimal point?
|
130
|
if ((e = n.indexOf('.')) > -1) n = n.replace('.', '');
|
131
|
|
132
|
// Exponential form?
|
133
|
if ((i = n.search(/e/i)) > 0) {
|
134
|
|
135
|
// Determine exponent.
|
136
|
if (e < 0) e = i;
|
137
|
e += +n.slice(i + 1);
|
138
|
n = n.substring(0, i);
|
139
|
} else if (e < 0) {
|
140
|
|
141
|
// Integer.
|
142
|
e = n.length;
|
143
|
}
|
144
|
|
145
|
nl = n.length;
|
146
|
|
147
|
// Determine leading zeros.
|
148
|
for (i = 0; i < nl && n.charAt(i) == '0';) ++i;
|
149
|
|
150
|
if (i == nl) {
|
151
|
|
152
|
// Zero.
|
153
|
x.c = [x.e = 0];
|
154
|
} else {
|
155
|
|
156
|
// Determine trailing zeros.
|
157
|
for (; nl > 0 && n.charAt(--nl) == '0';);
|
158
|
x.e = e - i - 1;
|
159
|
x.c = [];
|
160
|
|
161
|
// Convert string to array of digits without leading/trailing zeros.
|
162
|
for (e = 0; i <= nl;) x.c[e++] = +n.charAt(i++);
|
163
|
}
|
164
|
|
165
|
return x;
|
166
|
}
|
167
|
|
168
|
|
169
|
/*
|
170
|
* Round Big x to a maximum of dp decimal places using rounding mode rm.
|
171
|
* Called by stringify, P.div, P.round and P.sqrt.
|
172
|
*
|
173
|
* x {Big} The Big to round.
|
174
|
* dp {number} Integer, 0 to MAX_DP inclusive.
|
175
|
* rm {number} 0, 1, 2 or 3 (DOWN, HALF_UP, HALF_EVEN, UP)
|
176
|
* [more] {boolean} Whether the result of division was truncated.
|
177
|
*/
|
178
|
function round(x, dp, rm, more) {
|
179
|
var xc = x.c,
|
180
|
i = x.e + dp + 1;
|
181
|
|
182
|
if (i < xc.length) {
|
183
|
if (rm === 1) {
|
184
|
|
185
|
// xc[i] is the digit after the digit that may be rounded up.
|
186
|
more = xc[i] >= 5;
|
187
|
} else if (rm === 2) {
|
188
|
more = xc[i] > 5 || xc[i] == 5 &&
|
189
|
(more || i < 0 || xc[i + 1] !== UNDEFINED || xc[i - 1] & 1);
|
190
|
} else if (rm === 3) {
|
191
|
more = more || !!xc[0];
|
192
|
} else {
|
193
|
more = false;
|
194
|
if (rm !== 0) throw Error(INVALID_RM);
|
195
|
}
|
196
|
|
197
|
if (i < 1) {
|
198
|
xc.length = 1;
|
199
|
|
200
|
if (more) {
|
201
|
|
202
|
// 1, 0.1, 0.01, 0.001, 0.0001 etc.
|
203
|
x.e = -dp;
|
204
|
xc[0] = 1;
|
205
|
} else {
|
206
|
|
207
|
// Zero.
|
208
|
xc[0] = x.e = 0;
|
209
|
}
|
210
|
} else {
|
211
|
|
212
|
// Remove any digits after the required decimal places.
|
213
|
xc.length = i--;
|
214
|
|
215
|
// Round up?
|
216
|
if (more) {
|
217
|
|
218
|
// Rounding up may mean the previous digit has to be rounded up.
|
219
|
for (; ++xc[i] > 9;) {
|
220
|
xc[i] = 0;
|
221
|
if (!i--) {
|
222
|
++x.e;
|
223
|
xc.unshift(1);
|
224
|
}
|
225
|
}
|
226
|
}
|
227
|
|
228
|
// Remove trailing zeros.
|
229
|
for (i = xc.length; !xc[--i];) xc.pop();
|
230
|
}
|
231
|
} else if (rm < 0 || rm > 3 || rm !== ~~rm) {
|
232
|
throw Error(INVALID_RM);
|
233
|
}
|
234
|
|
235
|
return x;
|
236
|
}
|
237
|
|
238
|
|
239
|
/*
|
240
|
* Return a string representing the value of Big x in normal or exponential notation.
|
241
|
* Handles P.toExponential, P.toFixed, P.toJSON, P.toPrecision, P.toString and P.valueOf.
|
242
|
*
|
243
|
* x {Big}
|
244
|
* id? {number} Caller id.
|
245
|
* 1 toExponential
|
246
|
* 2 toFixed
|
247
|
* 3 toPrecision
|
248
|
* 4 valueOf
|
249
|
* n? {number|undefined} Caller's argument.
|
250
|
* k? {number|undefined}
|
251
|
*/
|
252
|
function stringify(x, id, n, k) {
|
253
|
var e, s,
|
254
|
Big = x.constructor,
|
255
|
z = !x.c[0];
|
256
|
|
257
|
if (n !== UNDEFINED) {
|
258
|
if (n !== ~~n || n < (id == 3) || n > MAX_DP) {
|
259
|
throw Error(id == 3 ? INVALID + 'precision' : INVALID_DP);
|
260
|
}
|
261
|
|
262
|
x = new Big(x);
|
263
|
|
264
|
// The index of the digit that may be rounded up.
|
265
|
n = k - x.e;
|
266
|
|
267
|
// Round?
|
268
|
if (x.c.length > ++k) round(x, n, Big.RM);
|
269
|
|
270
|
// toFixed: recalculate k as x.e may have changed if value rounded up.
|
271
|
if (id == 2) k = x.e + n + 1;
|
272
|
|
273
|
// Append zeros?
|
274
|
for (; x.c.length < k;) x.c.push(0);
|
275
|
}
|
276
|
|
277
|
e = x.e;
|
278
|
s = x.c.join('');
|
279
|
n = s.length;
|
280
|
|
281
|
// Exponential notation?
|
282
|
if (id != 2 && (id == 1 || id == 3 && k <= e || e <= Big.NE || e >= Big.PE)) {
|
283
|
s = s.charAt(0) + (n > 1 ? '.' + s.slice(1) : '') + (e < 0 ? 'e' : 'e+') + e;
|
284
|
|
285
|
// Normal notation.
|
286
|
} else if (e < 0) {
|
287
|
for (; ++e;) s = '0' + s;
|
288
|
s = '0.' + s;
|
289
|
} else if (e > 0) {
|
290
|
if (++e > n) for (e -= n; e--;) s += '0';
|
291
|
else if (e < n) s = s.slice(0, e) + '.' + s.slice(e);
|
292
|
} else if (n > 1) {
|
293
|
s = s.charAt(0) + '.' + s.slice(1);
|
294
|
}
|
295
|
|
296
|
return x.s < 0 && (!z || id == 4) ? '-' + s : s;
|
297
|
}
|
298
|
|
299
|
|
300
|
// Prototype/instance methods
|
301
|
|
302
|
|
303
|
/*
|
304
|
* Return a new Big whose value is the absolute value of this Big.
|
305
|
*/
|
306
|
P.abs = function () {
|
307
|
var x = new this.constructor(this);
|
308
|
x.s = 1;
|
309
|
return x;
|
310
|
};
|
311
|
|
312
|
|
313
|
/*
|
314
|
* Return 1 if the value of this Big is greater than the value of Big y,
|
315
|
* -1 if the value of this Big is less than the value of Big y, or
|
316
|
* 0 if they have the same value.
|
317
|
*/
|
318
|
P.cmp = function (y) {
|
319
|
var isneg,
|
320
|
x = this,
|
321
|
xc = x.c,
|
322
|
yc = (y = new x.constructor(y)).c,
|
323
|
i = x.s,
|
324
|
j = y.s,
|
325
|
k = x.e,
|
326
|
l = y.e;
|
327
|
|
328
|
// Either zero?
|
329
|
if (!xc[0] || !yc[0]) return !xc[0] ? !yc[0] ? 0 : -j : i;
|
330
|
|
331
|
// Signs differ?
|
332
|
if (i != j) return i;
|
333
|
|
334
|
isneg = i < 0;
|
335
|
|
336
|
// Compare exponents.
|
337
|
if (k != l) return k > l ^ isneg ? 1 : -1;
|
338
|
|
339
|
j = (k = xc.length) < (l = yc.length) ? k : l;
|
340
|
|
341
|
// Compare digit by digit.
|
342
|
for (i = -1; ++i < j;) {
|
343
|
if (xc[i] != yc[i]) return xc[i] > yc[i] ^ isneg ? 1 : -1;
|
344
|
}
|
345
|
|
346
|
// Compare lengths.
|
347
|
return k == l ? 0 : k > l ^ isneg ? 1 : -1;
|
348
|
};
|
349
|
|
350
|
|
351
|
/*
|
352
|
* Return a new Big whose value is the value of this Big divided by the value of Big y, rounded,
|
353
|
* if necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
|
354
|
*/
|
355
|
P.div = function (y) {
|
356
|
var x = this,
|
357
|
Big = x.constructor,
|
358
|
a = x.c, // dividend
|
359
|
b = (y = new Big(y)).c, // divisor
|
360
|
k = x.s == y.s ? 1 : -1,
|
361
|
dp = Big.DP;
|
362
|
|
363
|
if (dp !== ~~dp || dp < 0 || dp > MAX_DP) throw Error(INVALID_DP);
|
364
|
|
365
|
// Divisor is zero?
|
366
|
if (!b[0]) throw Error(DIV_BY_ZERO);
|
367
|
|
368
|
// Dividend is 0? Return +-0.
|
369
|
if (!a[0]) return new Big(k * 0);
|
370
|
|
371
|
var bl, bt, n, cmp, ri,
|
372
|
bz = b.slice(),
|
373
|
ai = bl = b.length,
|
374
|
al = a.length,
|
375
|
r = a.slice(0, bl), // remainder
|
376
|
rl = r.length,
|
377
|
q = y, // quotient
|
378
|
qc = q.c = [],
|
379
|
qi = 0,
|
380
|
d = dp + (q.e = x.e - y.e) + 1; // number of digits of the result
|
381
|
|
382
|
q.s = k;
|
383
|
k = d < 0 ? 0 : d;
|
384
|
|
385
|
// Create version of divisor with leading zero.
|
386
|
bz.unshift(0);
|
387
|
|
388
|
// Add zeros to make remainder as long as divisor.
|
389
|
for (; rl++ < bl;) r.push(0);
|
390
|
|
391
|
do {
|
392
|
|
393
|
// n is how many times the divisor goes into current remainder.
|
394
|
for (n = 0; n < 10; n++) {
|
395
|
|
396
|
// Compare divisor and remainder.
|
397
|
if (bl != (rl = r.length)) {
|
398
|
cmp = bl > rl ? 1 : -1;
|
399
|
} else {
|
400
|
for (ri = -1, cmp = 0; ++ri < bl;) {
|
401
|
if (b[ri] != r[ri]) {
|
402
|
cmp = b[ri] > r[ri] ? 1 : -1;
|
403
|
break;
|
404
|
}
|
405
|
}
|
406
|
}
|
407
|
|
408
|
// If divisor < remainder, subtract divisor from remainder.
|
409
|
if (cmp < 0) {
|
410
|
|
411
|
// Remainder can't be more than 1 digit longer than divisor.
|
412
|
// Equalise lengths using divisor with extra leading zero?
|
413
|
for (bt = rl == bl ? b : bz; rl;) {
|
414
|
if (r[--rl] < bt[rl]) {
|
415
|
ri = rl;
|
416
|
for (; ri && !r[--ri];) r[ri] = 9;
|
417
|
--r[ri];
|
418
|
r[rl] += 10;
|
419
|
}
|
420
|
r[rl] -= bt[rl];
|
421
|
}
|
422
|
|
423
|
for (; !r[0];) r.shift();
|
424
|
} else {
|
425
|
break;
|
426
|
}
|
427
|
}
|
428
|
|
429
|
// Add the digit n to the result array.
|
430
|
qc[qi++] = cmp ? n : ++n;
|
431
|
|
432
|
// Update the remainder.
|
433
|
if (r[0] && cmp) r[rl] = a[ai] || 0;
|
434
|
else r = [a[ai]];
|
435
|
|
436
|
} while ((ai++ < al || r[0] !== UNDEFINED) && k--);
|
437
|
|
438
|
// Leading zero? Do not remove if result is simply zero (qi == 1).
|
439
|
if (!qc[0] && qi != 1) {
|
440
|
|
441
|
// There can't be more than one zero.
|
442
|
qc.shift();
|
443
|
q.e--;
|
444
|
}
|
445
|
|
446
|
// Round?
|
447
|
if (qi > d) round(q, dp, Big.RM, r[0] !== UNDEFINED);
|
448
|
|
449
|
return q;
|
450
|
};
|
451
|
|
452
|
|
453
|
/*
|
454
|
* Return true if the value of this Big is equal to the value of Big y, otherwise return false.
|
455
|
*/
|
456
|
P.eq = function (y) {
|
457
|
return !this.cmp(y);
|
458
|
};
|
459
|
|
460
|
|
461
|
/*
|
462
|
* Return true if the value of this Big is greater than the value of Big y, otherwise return
|
463
|
* false.
|
464
|
*/
|
465
|
P.gt = function (y) {
|
466
|
return this.cmp(y) > 0;
|
467
|
};
|
468
|
|
469
|
|
470
|
/*
|
471
|
* Return true if the value of this Big is greater than or equal to the value of Big y, otherwise
|
472
|
* return false.
|
473
|
*/
|
474
|
P.gte = function (y) {
|
475
|
return this.cmp(y) > -1;
|
476
|
};
|
477
|
|
478
|
|
479
|
/*
|
480
|
* Return true if the value of this Big is less than the value of Big y, otherwise return false.
|
481
|
*/
|
482
|
P.lt = function (y) {
|
483
|
return this.cmp(y) < 0;
|
484
|
};
|
485
|
|
486
|
|
487
|
/*
|
488
|
* Return true if the value of this Big is less than or equal to the value of Big y, otherwise
|
489
|
* return false.
|
490
|
*/
|
491
|
P.lte = function (y) {
|
492
|
return this.cmp(y) < 1;
|
493
|
};
|
494
|
|
495
|
|
496
|
/*
|
497
|
* Return a new Big whose value is the value of this Big minus the value of Big y.
|
498
|
*/
|
499
|
P.minus = P.sub = function (y) {
|
500
|
var i, j, t, xlty,
|
501
|
x = this,
|
502
|
Big = x.constructor,
|
503
|
a = x.s,
|
504
|
b = (y = new Big(y)).s;
|
505
|
|
506
|
// Signs differ?
|
507
|
if (a != b) {
|
508
|
y.s = -b;
|
509
|
return x.plus(y);
|
510
|
}
|
511
|
|
512
|
var xc = x.c.slice(),
|
513
|
xe = x.e,
|
514
|
yc = y.c,
|
515
|
ye = y.e;
|
516
|
|
517
|
// Either zero?
|
518
|
if (!xc[0] || !yc[0]) {
|
519
|
|
520
|
// y is non-zero? x is non-zero? Or both are zero.
|
521
|
return yc[0] ? (y.s = -b, y) : new Big(xc[0] ? x : 0);
|
522
|
}
|
523
|
|
524
|
// Determine which is the bigger number. Prepend zeros to equalise exponents.
|
525
|
if (a = xe - ye) {
|
526
|
|
527
|
if (xlty = a < 0) {
|
528
|
a = -a;
|
529
|
t = xc;
|
530
|
} else {
|
531
|
ye = xe;
|
532
|
t = yc;
|
533
|
}
|
534
|
|
535
|
t.reverse();
|
536
|
for (b = a; b--;) t.push(0);
|
537
|
t.reverse();
|
538
|
} else {
|
539
|
|
540
|
// Exponents equal. Check digit by digit.
|
541
|
j = ((xlty = xc.length < yc.length) ? xc : yc).length;
|
542
|
|
543
|
for (a = b = 0; b < j; b++) {
|
544
|
if (xc[b] != yc[b]) {
|
545
|
xlty = xc[b] < yc[b];
|
546
|
break;
|
547
|
}
|
548
|
}
|
549
|
}
|
550
|
|
551
|
// x < y? Point xc to the array of the bigger number.
|
552
|
if (xlty) {
|
553
|
t = xc;
|
554
|
xc = yc;
|
555
|
yc = t;
|
556
|
y.s = -y.s;
|
557
|
}
|
558
|
|
559
|
/*
|
560
|
* Append zeros to xc if shorter. No need to add zeros to yc if shorter as subtraction only
|
561
|
* needs to start at yc.length.
|
562
|
*/
|
563
|
if ((b = (j = yc.length) - (i = xc.length)) > 0) for (; b--;) xc[i++] = 0;
|
564
|
|
565
|
// Subtract yc from xc.
|
566
|
for (b = i; j > a;) {
|
567
|
if (xc[--j] < yc[j]) {
|
568
|
for (i = j; i && !xc[--i];) xc[i] = 9;
|
569
|
--xc[i];
|
570
|
xc[j] += 10;
|
571
|
}
|
572
|
|
573
|
xc[j] -= yc[j];
|
574
|
}
|
575
|
|
576
|
// Remove trailing zeros.
|
577
|
for (; xc[--b] === 0;) xc.pop();
|
578
|
|
579
|
// Remove leading zeros and adjust exponent accordingly.
|
580
|
for (; xc[0] === 0;) {
|
581
|
xc.shift();
|
582
|
--ye;
|
583
|
}
|
584
|
|
585
|
if (!xc[0]) {
|
586
|
|
587
|
// n - n = +0
|
588
|
y.s = 1;
|
589
|
|
590
|
// Result must be zero.
|
591
|
xc = [ye = 0];
|
592
|
}
|
593
|
|
594
|
y.c = xc;
|
595
|
y.e = ye;
|
596
|
|
597
|
return y;
|
598
|
};
|
599
|
|
600
|
|
601
|
/*
|
602
|
* Return a new Big whose value is the value of this Big modulo the value of Big y.
|
603
|
*/
|
604
|
P.mod = function (y) {
|
605
|
var ygtx,
|
606
|
x = this,
|
607
|
Big = x.constructor,
|
608
|
a = x.s,
|
609
|
b = (y = new Big(y)).s;
|
610
|
|
611
|
if (!y.c[0]) throw Error(DIV_BY_ZERO);
|
612
|
|
613
|
x.s = y.s = 1;
|
614
|
ygtx = y.cmp(x) == 1;
|
615
|
x.s = a;
|
616
|
y.s = b;
|
617
|
|
618
|
if (ygtx) return new Big(x);
|
619
|
|
620
|
a = Big.DP;
|
621
|
b = Big.RM;
|
622
|
Big.DP = Big.RM = 0;
|
623
|
x = x.div(y);
|
624
|
Big.DP = a;
|
625
|
Big.RM = b;
|
626
|
|
627
|
return this.minus(x.times(y));
|
628
|
};
|
629
|
|
630
|
|
631
|
/*
|
632
|
* Return a new Big whose value is the value of this Big plus the value of Big y.
|
633
|
*/
|
634
|
P.plus = P.add = function (y) {
|
635
|
var t,
|
636
|
x = this,
|
637
|
Big = x.constructor,
|
638
|
a = x.s,
|
639
|
b = (y = new Big(y)).s;
|
640
|
|
641
|
// Signs differ?
|
642
|
if (a != b) {
|
643
|
y.s = -b;
|
644
|
return x.minus(y);
|
645
|
}
|
646
|
|
647
|
var xe = x.e,
|
648
|
xc = x.c,
|
649
|
ye = y.e,
|
650
|
yc = y.c;
|
651
|
|
652
|
// Either zero? y is non-zero? x is non-zero? Or both are zero.
|
653
|
if (!xc[0] || !yc[0]) return yc[0] ? y : new Big(xc[0] ? x : a * 0);
|
654
|
|
655
|
xc = xc.slice();
|
656
|
|
657
|
// Prepend zeros to equalise exponents.
|
658
|
// Note: reverse faster than unshifts.
|
659
|
if (a = xe - ye) {
|
660
|
if (a > 0) {
|
661
|
ye = xe;
|
662
|
t = yc;
|
663
|
} else {
|
664
|
a = -a;
|
665
|
t = xc;
|
666
|
}
|
667
|
|
668
|
t.reverse();
|
669
|
for (; a--;) t.push(0);
|
670
|
t.reverse();
|
671
|
}
|
672
|
|
673
|
// Point xc to the longer array.
|
674
|
if (xc.length - yc.length < 0) {
|
675
|
t = yc;
|
676
|
yc = xc;
|
677
|
xc = t;
|
678
|
}
|
679
|
|
680
|
a = yc.length;
|
681
|
|
682
|
// Only start adding at yc.length - 1 as the further digits of xc can be left as they are.
|
683
|
for (b = 0; a; xc[a] %= 10) b = (xc[--a] = xc[a] + yc[a] + b) / 10 | 0;
|
684
|
|
685
|
// No need to check for zero, as +x + +y != 0 && -x + -y != 0
|
686
|
|
687
|
if (b) {
|
688
|
xc.unshift(b);
|
689
|
++ye;
|
690
|
}
|
691
|
|
692
|
// Remove trailing zeros.
|
693
|
for (a = xc.length; xc[--a] === 0;) xc.pop();
|
694
|
|
695
|
y.c = xc;
|
696
|
y.e = ye;
|
697
|
|
698
|
return y;
|
699
|
};
|
700
|
|
701
|
|
702
|
/*
|
703
|
* Return a Big whose value is the value of this Big raised to the power n.
|
704
|
* If n is negative, round to a maximum of Big.DP decimal places using rounding
|
705
|
* mode Big.RM.
|
706
|
*
|
707
|
* n {number} Integer, -MAX_POWER to MAX_POWER inclusive.
|
708
|
*/
|
709
|
P.pow = function (n) {
|
710
|
var x = this,
|
711
|
one = new x.constructor(1),
|
712
|
y = one,
|
713
|
isneg = n < 0;
|
714
|
|
715
|
if (n !== ~~n || n < -MAX_POWER || n > MAX_POWER) throw Error(INVALID + 'exponent');
|
716
|
if (isneg) n = -n;
|
717
|
|
718
|
for (;;) {
|
719
|
if (n & 1) y = y.times(x);
|
720
|
n >>= 1;
|
721
|
if (!n) break;
|
722
|
x = x.times(x);
|
723
|
}
|
724
|
|
725
|
return isneg ? one.div(y) : y;
|
726
|
};
|
727
|
|
728
|
|
729
|
/*
|
730
|
* Return a new Big whose value is the value of this Big rounded using rounding mode rm
|
731
|
* to a maximum of dp decimal places, or, if dp is negative, to an integer which is a
|
732
|
* multiple of 10**-dp.
|
733
|
* If dp is not specified, round to 0 decimal places.
|
734
|
* If rm is not specified, use Big.RM.
|
735
|
*
|
736
|
* dp? {number} Integer, -MAX_DP to MAX_DP inclusive.
|
737
|
* rm? 0, 1, 2 or 3 (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_UP)
|
738
|
*/
|
739
|
P.round = function (dp, rm) {
|
740
|
var Big = this.constructor;
|
741
|
if (dp === UNDEFINED) dp = 0;
|
742
|
else if (dp !== ~~dp || dp < -MAX_DP || dp > MAX_DP) throw Error(INVALID_DP);
|
743
|
return round(new Big(this), dp, rm === UNDEFINED ? Big.RM : rm);
|
744
|
};
|
745
|
|
746
|
|
747
|
/*
|
748
|
* Return a new Big whose value is the square root of the value of this Big, rounded, if
|
749
|
* necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
|
750
|
*/
|
751
|
P.sqrt = function () {
|
752
|
var r, c, t,
|
753
|
x = this,
|
754
|
Big = x.constructor,
|
755
|
s = x.s,
|
756
|
e = x.e,
|
757
|
half = new Big(0.5);
|
758
|
|
759
|
// Zero?
|
760
|
if (!x.c[0]) return new Big(x);
|
761
|
|
762
|
// Negative?
|
763
|
if (s < 0) throw Error(NAME + 'No square root');
|
764
|
|
765
|
// Estimate.
|
766
|
s = Math.sqrt(x + '');
|
767
|
|
768
|
// Math.sqrt underflow/overflow?
|
769
|
// Re-estimate: pass x coefficient to Math.sqrt as integer, then adjust the result exponent.
|
770
|
if (s === 0 || s === 1 / 0) {
|
771
|
c = x.c.join('');
|
772
|
if (!(c.length + e & 1)) c += '0';
|
773
|
s = Math.sqrt(c);
|
774
|
e = ((e + 1) / 2 | 0) - (e < 0 || e & 1);
|
775
|
r = new Big((s == 1 / 0 ? '1e' : (s = s.toExponential()).slice(0, s.indexOf('e') + 1)) + e);
|
776
|
} else {
|
777
|
r = new Big(s);
|
778
|
}
|
779
|
|
780
|
e = r.e + (Big.DP += 4);
|
781
|
|
782
|
// Newton-Raphson iteration.
|
783
|
do {
|
784
|
t = r;
|
785
|
r = half.times(t.plus(x.div(t)));
|
786
|
} while (t.c.slice(0, e).join('') !== r.c.slice(0, e).join(''));
|
787
|
|
788
|
return round(r, Big.DP -= 4, Big.RM);
|
789
|
};
|
790
|
|
791
|
|
792
|
/*
|
793
|
* Return a new Big whose value is the value of this Big times the value of Big y.
|
794
|
*/
|
795
|
P.times = P.mul = function (y) {
|
796
|
var c,
|
797
|
x = this,
|
798
|
Big = x.constructor,
|
799
|
xc = x.c,
|
800
|
yc = (y = new Big(y)).c,
|
801
|
a = xc.length,
|
802
|
b = yc.length,
|
803
|
i = x.e,
|
804
|
j = y.e;
|
805
|
|
806
|
// Determine sign of result.
|
807
|
y.s = x.s == y.s ? 1 : -1;
|
808
|
|
809
|
// Return signed 0 if either 0.
|
810
|
if (!xc[0] || !yc[0]) return new Big(y.s * 0);
|
811
|
|
812
|
// Initialise exponent of result as x.e + y.e.
|
813
|
y.e = i + j;
|
814
|
|
815
|
// If array xc has fewer digits than yc, swap xc and yc, and lengths.
|
816
|
if (a < b) {
|
817
|
c = xc;
|
818
|
xc = yc;
|
819
|
yc = c;
|
820
|
j = a;
|
821
|
a = b;
|
822
|
b = j;
|
823
|
}
|
824
|
|
825
|
// Initialise coefficient array of result with zeros.
|
826
|
for (c = new Array(j = a + b); j--;) c[j] = 0;
|
827
|
|
828
|
// Multiply.
|
829
|
|
830
|
// i is initially xc.length.
|
831
|
for (i = b; i--;) {
|
832
|
b = 0;
|
833
|
|
834
|
// a is yc.length.
|
835
|
for (j = a + i; j > i;) {
|
836
|
|
837
|
// Current sum of products at this digit position, plus carry.
|
838
|
b = c[j] + yc[i] * xc[j - i - 1] + b;
|
839
|
c[j--] = b % 10;
|
840
|
|
841
|
// carry
|
842
|
b = b / 10 | 0;
|
843
|
}
|
844
|
|
845
|
c[j] = (c[j] + b) % 10;
|
846
|
}
|
847
|
|
848
|
// Increment result exponent if there is a final carry, otherwise remove leading zero.
|
849
|
if (b) ++y.e;
|
850
|
else c.shift();
|
851
|
|
852
|
// Remove trailing zeros.
|
853
|
for (i = c.length; !c[--i];) c.pop();
|
854
|
y.c = c;
|
855
|
|
856
|
return y;
|
857
|
};
|
858
|
|
859
|
|
860
|
/*
|
861
|
* Return a string representing the value of this Big in exponential notation to dp fixed decimal
|
862
|
* places and rounded using Big.RM.
|
863
|
*
|
864
|
* dp? {number} Integer, 0 to MAX_DP inclusive.
|
865
|
*/
|
866
|
P.toExponential = function (dp) {
|
867
|
return stringify(this, 1, dp, dp);
|
868
|
};
|
869
|
|
870
|
|
871
|
/*
|
872
|
* Return a string representing the value of this Big in normal notation to dp fixed decimal
|
873
|
* places and rounded using Big.RM.
|
874
|
*
|
875
|
* dp? {number} Integer, 0 to MAX_DP inclusive.
|
876
|
*
|
877
|
* (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.
|
878
|
* (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.
|
879
|
*/
|
880
|
P.toFixed = function (dp) {
|
881
|
return stringify(this, 2, dp, this.e + dp);
|
882
|
};
|
883
|
|
884
|
|
885
|
/*
|
886
|
* Return a string representing the value of this Big rounded to sd significant digits using
|
887
|
* Big.RM. Use exponential notation if sd is less than the number of digits necessary to represent
|
888
|
* the integer part of the value in normal notation.
|
889
|
*
|
890
|
* sd {number} Integer, 1 to MAX_DP inclusive.
|
891
|
*/
|
892
|
P.toPrecision = function (sd) {
|
893
|
return stringify(this, 3, sd, sd - 1);
|
894
|
};
|
895
|
|
896
|
|
897
|
/*
|
898
|
* Return a string representing the value of this Big.
|
899
|
* Return exponential notation if this Big has a positive exponent equal to or greater than
|
900
|
* Big.PE, or a negative exponent equal to or less than Big.NE.
|
901
|
* Omit the sign for negative zero.
|
902
|
*/
|
903
|
P.toString = function () {
|
904
|
return stringify(this);
|
905
|
};
|
906
|
|
907
|
|
908
|
/*
|
909
|
* Return a string representing the value of this Big.
|
910
|
* Return exponential notation if this Big has a positive exponent equal to or greater than
|
911
|
* Big.PE, or a negative exponent equal to or less than Big.NE.
|
912
|
* Include the sign for negative zero.
|
913
|
*/
|
914
|
P.valueOf = P.toJSON = function () {
|
915
|
return stringify(this, 4);
|
916
|
};
|
917
|
|
918
|
|
919
|
// Export
|
920
|
|
921
|
|
922
|
export var Big = _Big_();
|
923
|
|
924
|
export default Big;
|