1 |
3a515b92
|
cagy
|
/*
|
2 |
|
|
* big.js v5.2.2
|
3 |
|
|
* A small, fast, easy-to-use library for arbitrary-precision decimal arithmetic.
|
4 |
|
|
* Copyright (c) 2018 Michael Mclaughlin <M8ch88l@gmail.com>
|
5 |
|
|
* https://github.com/MikeMcl/big.js/LICENCE
|
6 |
|
|
*/
|
7 |
|
|
|
8 |
|
|
|
9 |
|
|
/************************************** EDITABLE DEFAULTS *****************************************/
|
10 |
|
|
|
11 |
|
|
|
12 |
|
|
// The default values below must be integers within the stated ranges.
|
13 |
|
|
|
14 |
|
|
/*
|
15 |
|
|
* The maximum number of decimal places (DP) of the results of operations involving division:
|
16 |
|
|
* div and sqrt, and pow with negative exponents.
|
17 |
|
|
*/
|
18 |
|
|
var DP = 20, // 0 to MAX_DP
|
19 |
|
|
|
20 |
|
|
/*
|
21 |
|
|
* The rounding mode (RM) used when rounding to the above decimal places.
|
22 |
|
|
*
|
23 |
|
|
* 0 Towards zero (i.e. truncate, no rounding). (ROUND_DOWN)
|
24 |
|
|
* 1 To nearest neighbour. If equidistant, round up. (ROUND_HALF_UP)
|
25 |
|
|
* 2 To nearest neighbour. If equidistant, to even. (ROUND_HALF_EVEN)
|
26 |
|
|
* 3 Away from zero. (ROUND_UP)
|
27 |
|
|
*/
|
28 |
|
|
RM = 1, // 0, 1, 2 or 3
|
29 |
|
|
|
30 |
|
|
// The maximum value of DP and Big.DP.
|
31 |
|
|
MAX_DP = 1E6, // 0 to 1000000
|
32 |
|
|
|
33 |
|
|
// The maximum magnitude of the exponent argument to the pow method.
|
34 |
|
|
MAX_POWER = 1E6, // 1 to 1000000
|
35 |
|
|
|
36 |
|
|
/*
|
37 |
|
|
* The negative exponent (NE) at and beneath which toString returns exponential notation.
|
38 |
|
|
* (JavaScript numbers: -7)
|
39 |
|
|
* -1000000 is the minimum recommended exponent value of a Big.
|
40 |
|
|
*/
|
41 |
|
|
NE = -7, // 0 to -1000000
|
42 |
|
|
|
43 |
|
|
/*
|
44 |
|
|
* The positive exponent (PE) at and above which toString returns exponential notation.
|
45 |
|
|
* (JavaScript numbers: 21)
|
46 |
|
|
* 1000000 is the maximum recommended exponent value of a Big.
|
47 |
|
|
* (This limit is not enforced or checked.)
|
48 |
|
|
*/
|
49 |
|
|
PE = 21, // 0 to 1000000
|
50 |
|
|
|
51 |
|
|
|
52 |
|
|
/**************************************************************************************************/
|
53 |
|
|
|
54 |
|
|
|
55 |
|
|
// Error messages.
|
56 |
|
|
NAME = '[big.js] ',
|
57 |
|
|
INVALID = NAME + 'Invalid ',
|
58 |
|
|
INVALID_DP = INVALID + 'decimal places',
|
59 |
|
|
INVALID_RM = INVALID + 'rounding mode',
|
60 |
|
|
DIV_BY_ZERO = NAME + 'Division by zero',
|
61 |
|
|
|
62 |
|
|
// The shared prototype object.
|
63 |
|
|
P = {},
|
64 |
|
|
UNDEFINED = void 0,
|
65 |
|
|
NUMERIC = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i;
|
66 |
|
|
|
67 |
|
|
|
68 |
|
|
/*
|
69 |
|
|
* Create and return a Big constructor.
|
70 |
|
|
*
|
71 |
|
|
*/
|
72 |
|
|
function _Big_() {
|
73 |
|
|
|
74 |
|
|
/*
|
75 |
|
|
* The Big constructor and exported function.
|
76 |
|
|
* Create and return a new instance of a Big number object.
|
77 |
|
|
*
|
78 |
|
|
* n {number|string|Big} A numeric value.
|
79 |
|
|
*/
|
80 |
|
|
function Big(n) {
|
81 |
|
|
var x = this;
|
82 |
|
|
|
83 |
|
|
// Enable constructor usage without new.
|
84 |
|
|
if (!(x instanceof Big)) return n === UNDEFINED ? _Big_() : new Big(n);
|
85 |
|
|
|
86 |
|
|
// Duplicate.
|
87 |
|
|
if (n instanceof Big) {
|
88 |
|
|
x.s = n.s;
|
89 |
|
|
x.e = n.e;
|
90 |
|
|
x.c = n.c.slice();
|
91 |
|
|
} else {
|
92 |
|
|
parse(x, n);
|
93 |
|
|
}
|
94 |
|
|
|
95 |
|
|
/*
|
96 |
|
|
* Retain a reference to this Big constructor, and shadow Big.prototype.constructor which
|
97 |
|
|
* points to Object.
|
98 |
|
|
*/
|
99 |
|
|
x.constructor = Big;
|
100 |
|
|
}
|
101 |
|
|
|
102 |
|
|
Big.prototype = P;
|
103 |
|
|
Big.DP = DP;
|
104 |
|
|
Big.RM = RM;
|
105 |
|
|
Big.NE = NE;
|
106 |
|
|
Big.PE = PE;
|
107 |
|
|
Big.version = '5.2.2';
|
108 |
|
|
|
109 |
|
|
return Big;
|
110 |
|
|
}
|
111 |
|
|
|
112 |
|
|
|
113 |
|
|
/*
|
114 |
|
|
* Parse the number or string value passed to a Big constructor.
|
115 |
|
|
*
|
116 |
|
|
* x {Big} A Big number instance.
|
117 |
|
|
* n {number|string} A numeric value.
|
118 |
|
|
*/
|
119 |
|
|
function parse(x, n) {
|
120 |
|
|
var e, i, nl;
|
121 |
|
|
|
122 |
|
|
// Minus zero?
|
123 |
|
|
if (n === 0 && 1 / n < 0) n = '-0';
|
124 |
|
|
else if (!NUMERIC.test(n += '')) throw Error(INVALID + 'number');
|
125 |
|
|
|
126 |
|
|
// Determine sign.
|
127 |
|
|
x.s = n.charAt(0) == '-' ? (n = n.slice(1), -1) : 1;
|
128 |
|
|
|
129 |
|
|
// Decimal point?
|
130 |
|
|
if ((e = n.indexOf('.')) > -1) n = n.replace('.', '');
|
131 |
|
|
|
132 |
|
|
// Exponential form?
|
133 |
|
|
if ((i = n.search(/e/i)) > 0) {
|
134 |
|
|
|
135 |
|
|
// Determine exponent.
|
136 |
|
|
if (e < 0) e = i;
|
137 |
|
|
e += +n.slice(i + 1);
|
138 |
|
|
n = n.substring(0, i);
|
139 |
|
|
} else if (e < 0) {
|
140 |
|
|
|
141 |
|
|
// Integer.
|
142 |
|
|
e = n.length;
|
143 |
|
|
}
|
144 |
|
|
|
145 |
|
|
nl = n.length;
|
146 |
|
|
|
147 |
|
|
// Determine leading zeros.
|
148 |
|
|
for (i = 0; i < nl && n.charAt(i) == '0';) ++i;
|
149 |
|
|
|
150 |
|
|
if (i == nl) {
|
151 |
|
|
|
152 |
|
|
// Zero.
|
153 |
|
|
x.c = [x.e = 0];
|
154 |
|
|
} else {
|
155 |
|
|
|
156 |
|
|
// Determine trailing zeros.
|
157 |
|
|
for (; nl > 0 && n.charAt(--nl) == '0';);
|
158 |
|
|
x.e = e - i - 1;
|
159 |
|
|
x.c = [];
|
160 |
|
|
|
161 |
|
|
// Convert string to array of digits without leading/trailing zeros.
|
162 |
|
|
for (e = 0; i <= nl;) x.c[e++] = +n.charAt(i++);
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
return x;
|
166 |
|
|
}
|
167 |
|
|
|
168 |
|
|
|
169 |
|
|
/*
|
170 |
|
|
* Round Big x to a maximum of dp decimal places using rounding mode rm.
|
171 |
|
|
* Called by stringify, P.div, P.round and P.sqrt.
|
172 |
|
|
*
|
173 |
|
|
* x {Big} The Big to round.
|
174 |
|
|
* dp {number} Integer, 0 to MAX_DP inclusive.
|
175 |
|
|
* rm {number} 0, 1, 2 or 3 (DOWN, HALF_UP, HALF_EVEN, UP)
|
176 |
|
|
* [more] {boolean} Whether the result of division was truncated.
|
177 |
|
|
*/
|
178 |
|
|
function round(x, dp, rm, more) {
|
179 |
|
|
var xc = x.c,
|
180 |
|
|
i = x.e + dp + 1;
|
181 |
|
|
|
182 |
|
|
if (i < xc.length) {
|
183 |
|
|
if (rm === 1) {
|
184 |
|
|
|
185 |
|
|
// xc[i] is the digit after the digit that may be rounded up.
|
186 |
|
|
more = xc[i] >= 5;
|
187 |
|
|
} else if (rm === 2) {
|
188 |
|
|
more = xc[i] > 5 || xc[i] == 5 &&
|
189 |
|
|
(more || i < 0 || xc[i + 1] !== UNDEFINED || xc[i - 1] & 1);
|
190 |
|
|
} else if (rm === 3) {
|
191 |
|
|
more = more || !!xc[0];
|
192 |
|
|
} else {
|
193 |
|
|
more = false;
|
194 |
|
|
if (rm !== 0) throw Error(INVALID_RM);
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
if (i < 1) {
|
198 |
|
|
xc.length = 1;
|
199 |
|
|
|
200 |
|
|
if (more) {
|
201 |
|
|
|
202 |
|
|
// 1, 0.1, 0.01, 0.001, 0.0001 etc.
|
203 |
|
|
x.e = -dp;
|
204 |
|
|
xc[0] = 1;
|
205 |
|
|
} else {
|
206 |
|
|
|
207 |
|
|
// Zero.
|
208 |
|
|
xc[0] = x.e = 0;
|
209 |
|
|
}
|
210 |
|
|
} else {
|
211 |
|
|
|
212 |
|
|
// Remove any digits after the required decimal places.
|
213 |
|
|
xc.length = i--;
|
214 |
|
|
|
215 |
|
|
// Round up?
|
216 |
|
|
if (more) {
|
217 |
|
|
|
218 |
|
|
// Rounding up may mean the previous digit has to be rounded up.
|
219 |
|
|
for (; ++xc[i] > 9;) {
|
220 |
|
|
xc[i] = 0;
|
221 |
|
|
if (!i--) {
|
222 |
|
|
++x.e;
|
223 |
|
|
xc.unshift(1);
|
224 |
|
|
}
|
225 |
|
|
}
|
226 |
|
|
}
|
227 |
|
|
|
228 |
|
|
// Remove trailing zeros.
|
229 |
|
|
for (i = xc.length; !xc[--i];) xc.pop();
|
230 |
|
|
}
|
231 |
|
|
} else if (rm < 0 || rm > 3 || rm !== ~~rm) {
|
232 |
|
|
throw Error(INVALID_RM);
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
return x;
|
236 |
|
|
}
|
237 |
|
|
|
238 |
|
|
|
239 |
|
|
/*
|
240 |
|
|
* Return a string representing the value of Big x in normal or exponential notation.
|
241 |
|
|
* Handles P.toExponential, P.toFixed, P.toJSON, P.toPrecision, P.toString and P.valueOf.
|
242 |
|
|
*
|
243 |
|
|
* x {Big}
|
244 |
|
|
* id? {number} Caller id.
|
245 |
|
|
* 1 toExponential
|
246 |
|
|
* 2 toFixed
|
247 |
|
|
* 3 toPrecision
|
248 |
|
|
* 4 valueOf
|
249 |
|
|
* n? {number|undefined} Caller's argument.
|
250 |
|
|
* k? {number|undefined}
|
251 |
|
|
*/
|
252 |
|
|
function stringify(x, id, n, k) {
|
253 |
|
|
var e, s,
|
254 |
|
|
Big = x.constructor,
|
255 |
|
|
z = !x.c[0];
|
256 |
|
|
|
257 |
|
|
if (n !== UNDEFINED) {
|
258 |
|
|
if (n !== ~~n || n < (id == 3) || n > MAX_DP) {
|
259 |
|
|
throw Error(id == 3 ? INVALID + 'precision' : INVALID_DP);
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
x = new Big(x);
|
263 |
|
|
|
264 |
|
|
// The index of the digit that may be rounded up.
|
265 |
|
|
n = k - x.e;
|
266 |
|
|
|
267 |
|
|
// Round?
|
268 |
|
|
if (x.c.length > ++k) round(x, n, Big.RM);
|
269 |
|
|
|
270 |
|
|
// toFixed: recalculate k as x.e may have changed if value rounded up.
|
271 |
|
|
if (id == 2) k = x.e + n + 1;
|
272 |
|
|
|
273 |
|
|
// Append zeros?
|
274 |
|
|
for (; x.c.length < k;) x.c.push(0);
|
275 |
|
|
}
|
276 |
|
|
|
277 |
|
|
e = x.e;
|
278 |
|
|
s = x.c.join('');
|
279 |
|
|
n = s.length;
|
280 |
|
|
|
281 |
|
|
// Exponential notation?
|
282 |
|
|
if (id != 2 && (id == 1 || id == 3 && k <= e || e <= Big.NE || e >= Big.PE)) {
|
283 |
|
|
s = s.charAt(0) + (n > 1 ? '.' + s.slice(1) : '') + (e < 0 ? 'e' : 'e+') + e;
|
284 |
|
|
|
285 |
|
|
// Normal notation.
|
286 |
|
|
} else if (e < 0) {
|
287 |
|
|
for (; ++e;) s = '0' + s;
|
288 |
|
|
s = '0.' + s;
|
289 |
|
|
} else if (e > 0) {
|
290 |
|
|
if (++e > n) for (e -= n; e--;) s += '0';
|
291 |
|
|
else if (e < n) s = s.slice(0, e) + '.' + s.slice(e);
|
292 |
|
|
} else if (n > 1) {
|
293 |
|
|
s = s.charAt(0) + '.' + s.slice(1);
|
294 |
|
|
}
|
295 |
|
|
|
296 |
|
|
return x.s < 0 && (!z || id == 4) ? '-' + s : s;
|
297 |
|
|
}
|
298 |
|
|
|
299 |
|
|
|
300 |
|
|
// Prototype/instance methods
|
301 |
|
|
|
302 |
|
|
|
303 |
|
|
/*
|
304 |
|
|
* Return a new Big whose value is the absolute value of this Big.
|
305 |
|
|
*/
|
306 |
|
|
P.abs = function () {
|
307 |
|
|
var x = new this.constructor(this);
|
308 |
|
|
x.s = 1;
|
309 |
|
|
return x;
|
310 |
|
|
};
|
311 |
|
|
|
312 |
|
|
|
313 |
|
|
/*
|
314 |
|
|
* Return 1 if the value of this Big is greater than the value of Big y,
|
315 |
|
|
* -1 if the value of this Big is less than the value of Big y, or
|
316 |
|
|
* 0 if they have the same value.
|
317 |
|
|
*/
|
318 |
|
|
P.cmp = function (y) {
|
319 |
|
|
var isneg,
|
320 |
|
|
x = this,
|
321 |
|
|
xc = x.c,
|
322 |
|
|
yc = (y = new x.constructor(y)).c,
|
323 |
|
|
i = x.s,
|
324 |
|
|
j = y.s,
|
325 |
|
|
k = x.e,
|
326 |
|
|
l = y.e;
|
327 |
|
|
|
328 |
|
|
// Either zero?
|
329 |
|
|
if (!xc[0] || !yc[0]) return !xc[0] ? !yc[0] ? 0 : -j : i;
|
330 |
|
|
|
331 |
|
|
// Signs differ?
|
332 |
|
|
if (i != j) return i;
|
333 |
|
|
|
334 |
|
|
isneg = i < 0;
|
335 |
|
|
|
336 |
|
|
// Compare exponents.
|
337 |
|
|
if (k != l) return k > l ^ isneg ? 1 : -1;
|
338 |
|
|
|
339 |
|
|
j = (k = xc.length) < (l = yc.length) ? k : l;
|
340 |
|
|
|
341 |
|
|
// Compare digit by digit.
|
342 |
|
|
for (i = -1; ++i < j;) {
|
343 |
|
|
if (xc[i] != yc[i]) return xc[i] > yc[i] ^ isneg ? 1 : -1;
|
344 |
|
|
}
|
345 |
|
|
|
346 |
|
|
// Compare lengths.
|
347 |
|
|
return k == l ? 0 : k > l ^ isneg ? 1 : -1;
|
348 |
|
|
};
|
349 |
|
|
|
350 |
|
|
|
351 |
|
|
/*
|
352 |
|
|
* Return a new Big whose value is the value of this Big divided by the value of Big y, rounded,
|
353 |
|
|
* if necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
|
354 |
|
|
*/
|
355 |
|
|
P.div = function (y) {
|
356 |
|
|
var x = this,
|
357 |
|
|
Big = x.constructor,
|
358 |
|
|
a = x.c, // dividend
|
359 |
|
|
b = (y = new Big(y)).c, // divisor
|
360 |
|
|
k = x.s == y.s ? 1 : -1,
|
361 |
|
|
dp = Big.DP;
|
362 |
|
|
|
363 |
|
|
if (dp !== ~~dp || dp < 0 || dp > MAX_DP) throw Error(INVALID_DP);
|
364 |
|
|
|
365 |
|
|
// Divisor is zero?
|
366 |
|
|
if (!b[0]) throw Error(DIV_BY_ZERO);
|
367 |
|
|
|
368 |
|
|
// Dividend is 0? Return +-0.
|
369 |
|
|
if (!a[0]) return new Big(k * 0);
|
370 |
|
|
|
371 |
|
|
var bl, bt, n, cmp, ri,
|
372 |
|
|
bz = b.slice(),
|
373 |
|
|
ai = bl = b.length,
|
374 |
|
|
al = a.length,
|
375 |
|
|
r = a.slice(0, bl), // remainder
|
376 |
|
|
rl = r.length,
|
377 |
|
|
q = y, // quotient
|
378 |
|
|
qc = q.c = [],
|
379 |
|
|
qi = 0,
|
380 |
|
|
d = dp + (q.e = x.e - y.e) + 1; // number of digits of the result
|
381 |
|
|
|
382 |
|
|
q.s = k;
|
383 |
|
|
k = d < 0 ? 0 : d;
|
384 |
|
|
|
385 |
|
|
// Create version of divisor with leading zero.
|
386 |
|
|
bz.unshift(0);
|
387 |
|
|
|
388 |
|
|
// Add zeros to make remainder as long as divisor.
|
389 |
|
|
for (; rl++ < bl;) r.push(0);
|
390 |
|
|
|
391 |
|
|
do {
|
392 |
|
|
|
393 |
|
|
// n is how many times the divisor goes into current remainder.
|
394 |
|
|
for (n = 0; n < 10; n++) {
|
395 |
|
|
|
396 |
|
|
// Compare divisor and remainder.
|
397 |
|
|
if (bl != (rl = r.length)) {
|
398 |
|
|
cmp = bl > rl ? 1 : -1;
|
399 |
|
|
} else {
|
400 |
|
|
for (ri = -1, cmp = 0; ++ri < bl;) {
|
401 |
|
|
if (b[ri] != r[ri]) {
|
402 |
|
|
cmp = b[ri] > r[ri] ? 1 : -1;
|
403 |
|
|
break;
|
404 |
|
|
}
|
405 |
|
|
}
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
// If divisor < remainder, subtract divisor from remainder.
|
409 |
|
|
if (cmp < 0) {
|
410 |
|
|
|
411 |
|
|
// Remainder can't be more than 1 digit longer than divisor.
|
412 |
|
|
// Equalise lengths using divisor with extra leading zero?
|
413 |
|
|
for (bt = rl == bl ? b : bz; rl;) {
|
414 |
|
|
if (r[--rl] < bt[rl]) {
|
415 |
|
|
ri = rl;
|
416 |
|
|
for (; ri && !r[--ri];) r[ri] = 9;
|
417 |
|
|
--r[ri];
|
418 |
|
|
r[rl] += 10;
|
419 |
|
|
}
|
420 |
|
|
r[rl] -= bt[rl];
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
for (; !r[0];) r.shift();
|
424 |
|
|
} else {
|
425 |
|
|
break;
|
426 |
|
|
}
|
427 |
|
|
}
|
428 |
|
|
|
429 |
|
|
// Add the digit n to the result array.
|
430 |
|
|
qc[qi++] = cmp ? n : ++n;
|
431 |
|
|
|
432 |
|
|
// Update the remainder.
|
433 |
|
|
if (r[0] && cmp) r[rl] = a[ai] || 0;
|
434 |
|
|
else r = [a[ai]];
|
435 |
|
|
|
436 |
|
|
} while ((ai++ < al || r[0] !== UNDEFINED) && k--);
|
437 |
|
|
|
438 |
|
|
// Leading zero? Do not remove if result is simply zero (qi == 1).
|
439 |
|
|
if (!qc[0] && qi != 1) {
|
440 |
|
|
|
441 |
|
|
// There can't be more than one zero.
|
442 |
|
|
qc.shift();
|
443 |
|
|
q.e--;
|
444 |
|
|
}
|
445 |
|
|
|
446 |
|
|
// Round?
|
447 |
|
|
if (qi > d) round(q, dp, Big.RM, r[0] !== UNDEFINED);
|
448 |
|
|
|
449 |
|
|
return q;
|
450 |
|
|
};
|
451 |
|
|
|
452 |
|
|
|
453 |
|
|
/*
|
454 |
|
|
* Return true if the value of this Big is equal to the value of Big y, otherwise return false.
|
455 |
|
|
*/
|
456 |
|
|
P.eq = function (y) {
|
457 |
|
|
return !this.cmp(y);
|
458 |
|
|
};
|
459 |
|
|
|
460 |
|
|
|
461 |
|
|
/*
|
462 |
|
|
* Return true if the value of this Big is greater than the value of Big y, otherwise return
|
463 |
|
|
* false.
|
464 |
|
|
*/
|
465 |
|
|
P.gt = function (y) {
|
466 |
|
|
return this.cmp(y) > 0;
|
467 |
|
|
};
|
468 |
|
|
|
469 |
|
|
|
470 |
|
|
/*
|
471 |
|
|
* Return true if the value of this Big is greater than or equal to the value of Big y, otherwise
|
472 |
|
|
* return false.
|
473 |
|
|
*/
|
474 |
|
|
P.gte = function (y) {
|
475 |
|
|
return this.cmp(y) > -1;
|
476 |
|
|
};
|
477 |
|
|
|
478 |
|
|
|
479 |
|
|
/*
|
480 |
|
|
* Return true if the value of this Big is less than the value of Big y, otherwise return false.
|
481 |
|
|
*/
|
482 |
|
|
P.lt = function (y) {
|
483 |
|
|
return this.cmp(y) < 0;
|
484 |
|
|
};
|
485 |
|
|
|
486 |
|
|
|
487 |
|
|
/*
|
488 |
|
|
* Return true if the value of this Big is less than or equal to the value of Big y, otherwise
|
489 |
|
|
* return false.
|
490 |
|
|
*/
|
491 |
|
|
P.lte = function (y) {
|
492 |
|
|
return this.cmp(y) < 1;
|
493 |
|
|
};
|
494 |
|
|
|
495 |
|
|
|
496 |
|
|
/*
|
497 |
|
|
* Return a new Big whose value is the value of this Big minus the value of Big y.
|
498 |
|
|
*/
|
499 |
|
|
P.minus = P.sub = function (y) {
|
500 |
|
|
var i, j, t, xlty,
|
501 |
|
|
x = this,
|
502 |
|
|
Big = x.constructor,
|
503 |
|
|
a = x.s,
|
504 |
|
|
b = (y = new Big(y)).s;
|
505 |
|
|
|
506 |
|
|
// Signs differ?
|
507 |
|
|
if (a != b) {
|
508 |
|
|
y.s = -b;
|
509 |
|
|
return x.plus(y);
|
510 |
|
|
}
|
511 |
|
|
|
512 |
|
|
var xc = x.c.slice(),
|
513 |
|
|
xe = x.e,
|
514 |
|
|
yc = y.c,
|
515 |
|
|
ye = y.e;
|
516 |
|
|
|
517 |
|
|
// Either zero?
|
518 |
|
|
if (!xc[0] || !yc[0]) {
|
519 |
|
|
|
520 |
|
|
// y is non-zero? x is non-zero? Or both are zero.
|
521 |
|
|
return yc[0] ? (y.s = -b, y) : new Big(xc[0] ? x : 0);
|
522 |
|
|
}
|
523 |
|
|
|
524 |
|
|
// Determine which is the bigger number. Prepend zeros to equalise exponents.
|
525 |
|
|
if (a = xe - ye) {
|
526 |
|
|
|
527 |
|
|
if (xlty = a < 0) {
|
528 |
|
|
a = -a;
|
529 |
|
|
t = xc;
|
530 |
|
|
} else {
|
531 |
|
|
ye = xe;
|
532 |
|
|
t = yc;
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
t.reverse();
|
536 |
|
|
for (b = a; b--;) t.push(0);
|
537 |
|
|
t.reverse();
|
538 |
|
|
} else {
|
539 |
|
|
|
540 |
|
|
// Exponents equal. Check digit by digit.
|
541 |
|
|
j = ((xlty = xc.length < yc.length) ? xc : yc).length;
|
542 |
|
|
|
543 |
|
|
for (a = b = 0; b < j; b++) {
|
544 |
|
|
if (xc[b] != yc[b]) {
|
545 |
|
|
xlty = xc[b] < yc[b];
|
546 |
|
|
break;
|
547 |
|
|
}
|
548 |
|
|
}
|
549 |
|
|
}
|
550 |
|
|
|
551 |
|
|
// x < y? Point xc to the array of the bigger number.
|
552 |
|
|
if (xlty) {
|
553 |
|
|
t = xc;
|
554 |
|
|
xc = yc;
|
555 |
|
|
yc = t;
|
556 |
|
|
y.s = -y.s;
|
557 |
|
|
}
|
558 |
|
|
|
559 |
|
|
/*
|
560 |
|
|
* Append zeros to xc if shorter. No need to add zeros to yc if shorter as subtraction only
|
561 |
|
|
* needs to start at yc.length.
|
562 |
|
|
*/
|
563 |
|
|
if ((b = (j = yc.length) - (i = xc.length)) > 0) for (; b--;) xc[i++] = 0;
|
564 |
|
|
|
565 |
|
|
// Subtract yc from xc.
|
566 |
|
|
for (b = i; j > a;) {
|
567 |
|
|
if (xc[--j] < yc[j]) {
|
568 |
|
|
for (i = j; i && !xc[--i];) xc[i] = 9;
|
569 |
|
|
--xc[i];
|
570 |
|
|
xc[j] += 10;
|
571 |
|
|
}
|
572 |
|
|
|
573 |
|
|
xc[j] -= yc[j];
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
// Remove trailing zeros.
|
577 |
|
|
for (; xc[--b] === 0;) xc.pop();
|
578 |
|
|
|
579 |
|
|
// Remove leading zeros and adjust exponent accordingly.
|
580 |
|
|
for (; xc[0] === 0;) {
|
581 |
|
|
xc.shift();
|
582 |
|
|
--ye;
|
583 |
|
|
}
|
584 |
|
|
|
585 |
|
|
if (!xc[0]) {
|
586 |
|
|
|
587 |
|
|
// n - n = +0
|
588 |
|
|
y.s = 1;
|
589 |
|
|
|
590 |
|
|
// Result must be zero.
|
591 |
|
|
xc = [ye = 0];
|
592 |
|
|
}
|
593 |
|
|
|
594 |
|
|
y.c = xc;
|
595 |
|
|
y.e = ye;
|
596 |
|
|
|
597 |
|
|
return y;
|
598 |
|
|
};
|
599 |
|
|
|
600 |
|
|
|
601 |
|
|
/*
|
602 |
|
|
* Return a new Big whose value is the value of this Big modulo the value of Big y.
|
603 |
|
|
*/
|
604 |
|
|
P.mod = function (y) {
|
605 |
|
|
var ygtx,
|
606 |
|
|
x = this,
|
607 |
|
|
Big = x.constructor,
|
608 |
|
|
a = x.s,
|
609 |
|
|
b = (y = new Big(y)).s;
|
610 |
|
|
|
611 |
|
|
if (!y.c[0]) throw Error(DIV_BY_ZERO);
|
612 |
|
|
|
613 |
|
|
x.s = y.s = 1;
|
614 |
|
|
ygtx = y.cmp(x) == 1;
|
615 |
|
|
x.s = a;
|
616 |
|
|
y.s = b;
|
617 |
|
|
|
618 |
|
|
if (ygtx) return new Big(x);
|
619 |
|
|
|
620 |
|
|
a = Big.DP;
|
621 |
|
|
b = Big.RM;
|
622 |
|
|
Big.DP = Big.RM = 0;
|
623 |
|
|
x = x.div(y);
|
624 |
|
|
Big.DP = a;
|
625 |
|
|
Big.RM = b;
|
626 |
|
|
|
627 |
|
|
return this.minus(x.times(y));
|
628 |
|
|
};
|
629 |
|
|
|
630 |
|
|
|
631 |
|
|
/*
|
632 |
|
|
* Return a new Big whose value is the value of this Big plus the value of Big y.
|
633 |
|
|
*/
|
634 |
|
|
P.plus = P.add = function (y) {
|
635 |
|
|
var t,
|
636 |
|
|
x = this,
|
637 |
|
|
Big = x.constructor,
|
638 |
|
|
a = x.s,
|
639 |
|
|
b = (y = new Big(y)).s;
|
640 |
|
|
|
641 |
|
|
// Signs differ?
|
642 |
|
|
if (a != b) {
|
643 |
|
|
y.s = -b;
|
644 |
|
|
return x.minus(y);
|
645 |
|
|
}
|
646 |
|
|
|
647 |
|
|
var xe = x.e,
|
648 |
|
|
xc = x.c,
|
649 |
|
|
ye = y.e,
|
650 |
|
|
yc = y.c;
|
651 |
|
|
|
652 |
|
|
// Either zero? y is non-zero? x is non-zero? Or both are zero.
|
653 |
|
|
if (!xc[0] || !yc[0]) return yc[0] ? y : new Big(xc[0] ? x : a * 0);
|
654 |
|
|
|
655 |
|
|
xc = xc.slice();
|
656 |
|
|
|
657 |
|
|
// Prepend zeros to equalise exponents.
|
658 |
|
|
// Note: reverse faster than unshifts.
|
659 |
|
|
if (a = xe - ye) {
|
660 |
|
|
if (a > 0) {
|
661 |
|
|
ye = xe;
|
662 |
|
|
t = yc;
|
663 |
|
|
} else {
|
664 |
|
|
a = -a;
|
665 |
|
|
t = xc;
|
666 |
|
|
}
|
667 |
|
|
|
668 |
|
|
t.reverse();
|
669 |
|
|
for (; a--;) t.push(0);
|
670 |
|
|
t.reverse();
|
671 |
|
|
}
|
672 |
|
|
|
673 |
|
|
// Point xc to the longer array.
|
674 |
|
|
if (xc.length - yc.length < 0) {
|
675 |
|
|
t = yc;
|
676 |
|
|
yc = xc;
|
677 |
|
|
xc = t;
|
678 |
|
|
}
|
679 |
|
|
|
680 |
|
|
a = yc.length;
|
681 |
|
|
|
682 |
|
|
// Only start adding at yc.length - 1 as the further digits of xc can be left as they are.
|
683 |
|
|
for (b = 0; a; xc[a] %= 10) b = (xc[--a] = xc[a] + yc[a] + b) / 10 | 0;
|
684 |
|
|
|
685 |
|
|
// No need to check for zero, as +x + +y != 0 && -x + -y != 0
|
686 |
|
|
|
687 |
|
|
if (b) {
|
688 |
|
|
xc.unshift(b);
|
689 |
|
|
++ye;
|
690 |
|
|
}
|
691 |
|
|
|
692 |
|
|
// Remove trailing zeros.
|
693 |
|
|
for (a = xc.length; xc[--a] === 0;) xc.pop();
|
694 |
|
|
|
695 |
|
|
y.c = xc;
|
696 |
|
|
y.e = ye;
|
697 |
|
|
|
698 |
|
|
return y;
|
699 |
|
|
};
|
700 |
|
|
|
701 |
|
|
|
702 |
|
|
/*
|
703 |
|
|
* Return a Big whose value is the value of this Big raised to the power n.
|
704 |
|
|
* If n is negative, round to a maximum of Big.DP decimal places using rounding
|
705 |
|
|
* mode Big.RM.
|
706 |
|
|
*
|
707 |
|
|
* n {number} Integer, -MAX_POWER to MAX_POWER inclusive.
|
708 |
|
|
*/
|
709 |
|
|
P.pow = function (n) {
|
710 |
|
|
var x = this,
|
711 |
|
|
one = new x.constructor(1),
|
712 |
|
|
y = one,
|
713 |
|
|
isneg = n < 0;
|
714 |
|
|
|
715 |
|
|
if (n !== ~~n || n < -MAX_POWER || n > MAX_POWER) throw Error(INVALID + 'exponent');
|
716 |
|
|
if (isneg) n = -n;
|
717 |
|
|
|
718 |
|
|
for (;;) {
|
719 |
|
|
if (n & 1) y = y.times(x);
|
720 |
|
|
n >>= 1;
|
721 |
|
|
if (!n) break;
|
722 |
|
|
x = x.times(x);
|
723 |
|
|
}
|
724 |
|
|
|
725 |
|
|
return isneg ? one.div(y) : y;
|
726 |
|
|
};
|
727 |
|
|
|
728 |
|
|
|
729 |
|
|
/*
|
730 |
|
|
* Return a new Big whose value is the value of this Big rounded using rounding mode rm
|
731 |
|
|
* to a maximum of dp decimal places, or, if dp is negative, to an integer which is a
|
732 |
|
|
* multiple of 10**-dp.
|
733 |
|
|
* If dp is not specified, round to 0 decimal places.
|
734 |
|
|
* If rm is not specified, use Big.RM.
|
735 |
|
|
*
|
736 |
|
|
* dp? {number} Integer, -MAX_DP to MAX_DP inclusive.
|
737 |
|
|
* rm? 0, 1, 2 or 3 (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_UP)
|
738 |
|
|
*/
|
739 |
|
|
P.round = function (dp, rm) {
|
740 |
|
|
var Big = this.constructor;
|
741 |
|
|
if (dp === UNDEFINED) dp = 0;
|
742 |
|
|
else if (dp !== ~~dp || dp < -MAX_DP || dp > MAX_DP) throw Error(INVALID_DP);
|
743 |
|
|
return round(new Big(this), dp, rm === UNDEFINED ? Big.RM : rm);
|
744 |
|
|
};
|
745 |
|
|
|
746 |
|
|
|
747 |
|
|
/*
|
748 |
|
|
* Return a new Big whose value is the square root of the value of this Big, rounded, if
|
749 |
|
|
* necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
|
750 |
|
|
*/
|
751 |
|
|
P.sqrt = function () {
|
752 |
|
|
var r, c, t,
|
753 |
|
|
x = this,
|
754 |
|
|
Big = x.constructor,
|
755 |
|
|
s = x.s,
|
756 |
|
|
e = x.e,
|
757 |
|
|
half = new Big(0.5);
|
758 |
|
|
|
759 |
|
|
// Zero?
|
760 |
|
|
if (!x.c[0]) return new Big(x);
|
761 |
|
|
|
762 |
|
|
// Negative?
|
763 |
|
|
if (s < 0) throw Error(NAME + 'No square root');
|
764 |
|
|
|
765 |
|
|
// Estimate.
|
766 |
|
|
s = Math.sqrt(x + '');
|
767 |
|
|
|
768 |
|
|
// Math.sqrt underflow/overflow?
|
769 |
|
|
// Re-estimate: pass x coefficient to Math.sqrt as integer, then adjust the result exponent.
|
770 |
|
|
if (s === 0 || s === 1 / 0) {
|
771 |
|
|
c = x.c.join('');
|
772 |
|
|
if (!(c.length + e & 1)) c += '0';
|
773 |
|
|
s = Math.sqrt(c);
|
774 |
|
|
e = ((e + 1) / 2 | 0) - (e < 0 || e & 1);
|
775 |
|
|
r = new Big((s == 1 / 0 ? '1e' : (s = s.toExponential()).slice(0, s.indexOf('e') + 1)) + e);
|
776 |
|
|
} else {
|
777 |
|
|
r = new Big(s);
|
778 |
|
|
}
|
779 |
|
|
|
780 |
|
|
e = r.e + (Big.DP += 4);
|
781 |
|
|
|
782 |
|
|
// Newton-Raphson iteration.
|
783 |
|
|
do {
|
784 |
|
|
t = r;
|
785 |
|
|
r = half.times(t.plus(x.div(t)));
|
786 |
|
|
} while (t.c.slice(0, e).join('') !== r.c.slice(0, e).join(''));
|
787 |
|
|
|
788 |
|
|
return round(r, Big.DP -= 4, Big.RM);
|
789 |
|
|
};
|
790 |
|
|
|
791 |
|
|
|
792 |
|
|
/*
|
793 |
|
|
* Return a new Big whose value is the value of this Big times the value of Big y.
|
794 |
|
|
*/
|
795 |
|
|
P.times = P.mul = function (y) {
|
796 |
|
|
var c,
|
797 |
|
|
x = this,
|
798 |
|
|
Big = x.constructor,
|
799 |
|
|
xc = x.c,
|
800 |
|
|
yc = (y = new Big(y)).c,
|
801 |
|
|
a = xc.length,
|
802 |
|
|
b = yc.length,
|
803 |
|
|
i = x.e,
|
804 |
|
|
j = y.e;
|
805 |
|
|
|
806 |
|
|
// Determine sign of result.
|
807 |
|
|
y.s = x.s == y.s ? 1 : -1;
|
808 |
|
|
|
809 |
|
|
// Return signed 0 if either 0.
|
810 |
|
|
if (!xc[0] || !yc[0]) return new Big(y.s * 0);
|
811 |
|
|
|
812 |
|
|
// Initialise exponent of result as x.e + y.e.
|
813 |
|
|
y.e = i + j;
|
814 |
|
|
|
815 |
|
|
// If array xc has fewer digits than yc, swap xc and yc, and lengths.
|
816 |
|
|
if (a < b) {
|
817 |
|
|
c = xc;
|
818 |
|
|
xc = yc;
|
819 |
|
|
yc = c;
|
820 |
|
|
j = a;
|
821 |
|
|
a = b;
|
822 |
|
|
b = j;
|
823 |
|
|
}
|
824 |
|
|
|
825 |
|
|
// Initialise coefficient array of result with zeros.
|
826 |
|
|
for (c = new Array(j = a + b); j--;) c[j] = 0;
|
827 |
|
|
|
828 |
|
|
// Multiply.
|
829 |
|
|
|
830 |
|
|
// i is initially xc.length.
|
831 |
|
|
for (i = b; i--;) {
|
832 |
|
|
b = 0;
|
833 |
|
|
|
834 |
|
|
// a is yc.length.
|
835 |
|
|
for (j = a + i; j > i;) {
|
836 |
|
|
|
837 |
|
|
// Current sum of products at this digit position, plus carry.
|
838 |
|
|
b = c[j] + yc[i] * xc[j - i - 1] + b;
|
839 |
|
|
c[j--] = b % 10;
|
840 |
|
|
|
841 |
|
|
// carry
|
842 |
|
|
b = b / 10 | 0;
|
843 |
|
|
}
|
844 |
|
|
|
845 |
|
|
c[j] = (c[j] + b) % 10;
|
846 |
|
|
}
|
847 |
|
|
|
848 |
|
|
// Increment result exponent if there is a final carry, otherwise remove leading zero.
|
849 |
|
|
if (b) ++y.e;
|
850 |
|
|
else c.shift();
|
851 |
|
|
|
852 |
|
|
// Remove trailing zeros.
|
853 |
|
|
for (i = c.length; !c[--i];) c.pop();
|
854 |
|
|
y.c = c;
|
855 |
|
|
|
856 |
|
|
return y;
|
857 |
|
|
};
|
858 |
|
|
|
859 |
|
|
|
860 |
|
|
/*
|
861 |
|
|
* Return a string representing the value of this Big in exponential notation to dp fixed decimal
|
862 |
|
|
* places and rounded using Big.RM.
|
863 |
|
|
*
|
864 |
|
|
* dp? {number} Integer, 0 to MAX_DP inclusive.
|
865 |
|
|
*/
|
866 |
|
|
P.toExponential = function (dp) {
|
867 |
|
|
return stringify(this, 1, dp, dp);
|
868 |
|
|
};
|
869 |
|
|
|
870 |
|
|
|
871 |
|
|
/*
|
872 |
|
|
* Return a string representing the value of this Big in normal notation to dp fixed decimal
|
873 |
|
|
* places and rounded using Big.RM.
|
874 |
|
|
*
|
875 |
|
|
* dp? {number} Integer, 0 to MAX_DP inclusive.
|
876 |
|
|
*
|
877 |
|
|
* (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.
|
878 |
|
|
* (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.
|
879 |
|
|
*/
|
880 |
|
|
P.toFixed = function (dp) {
|
881 |
|
|
return stringify(this, 2, dp, this.e + dp);
|
882 |
|
|
};
|
883 |
|
|
|
884 |
|
|
|
885 |
|
|
/*
|
886 |
|
|
* Return a string representing the value of this Big rounded to sd significant digits using
|
887 |
|
|
* Big.RM. Use exponential notation if sd is less than the number of digits necessary to represent
|
888 |
|
|
* the integer part of the value in normal notation.
|
889 |
|
|
*
|
890 |
|
|
* sd {number} Integer, 1 to MAX_DP inclusive.
|
891 |
|
|
*/
|
892 |
|
|
P.toPrecision = function (sd) {
|
893 |
|
|
return stringify(this, 3, sd, sd - 1);
|
894 |
|
|
};
|
895 |
|
|
|
896 |
|
|
|
897 |
|
|
/*
|
898 |
|
|
* Return a string representing the value of this Big.
|
899 |
|
|
* Return exponential notation if this Big has a positive exponent equal to or greater than
|
900 |
|
|
* Big.PE, or a negative exponent equal to or less than Big.NE.
|
901 |
|
|
* Omit the sign for negative zero.
|
902 |
|
|
*/
|
903 |
|
|
P.toString = function () {
|
904 |
|
|
return stringify(this);
|
905 |
|
|
};
|
906 |
|
|
|
907 |
|
|
|
908 |
|
|
/*
|
909 |
|
|
* Return a string representing the value of this Big.
|
910 |
|
|
* Return exponential notation if this Big has a positive exponent equal to or greater than
|
911 |
|
|
* Big.PE, or a negative exponent equal to or less than Big.NE.
|
912 |
|
|
* Include the sign for negative zero.
|
913 |
|
|
*/
|
914 |
|
|
P.valueOf = P.toJSON = function () {
|
915 |
|
|
return stringify(this, 4);
|
916 |
|
|
};
|
917 |
|
|
|
918 |
|
|
|
919 |
|
|
// Export
|
920 |
|
|
|
921 |
|
|
|
922 |
|
|
export var Big = _Big_();
|
923 |
|
|
|
924 |
|
|
export default Big;
|