FACULTY OF APPLIED SCIENCES DEPARTMENT OF
> UNIVERSITY COMPUTER SCIENCE
OF WEST BOHEMIA AND ENGINEERING

Software Architecture

Jakub Pavligek & Stépén Faragula

PILSEN, CZECH REPUBLIC 21.4.2025

1 Introduction

1.1 Purpose..........
1.2 System Overview
1.3 Primary Objectives . . .

2 Architecture Overview

2.1 High-Level Architecture Overview
2.1.1 Technology Stack
2.2 Service Layer Overview e
22.1 CorePackage
222 SpecificPumpPackage
2.2.3 Listof Related Services,

3 ALM Data Pump Implementation

3.1 Package-Level Overview

3.2 Class-Level Overview . .

4 API
4.1 Endpoints
411 Pumps
4.1.2 Projects
413 Tools.

4.2 API Design Best Practices

List of Figures

10

12
12
12
12
12
13

14

Introduction

1.1 Purpose

This document presents a comprehensive overview of the software architecture for a pump
control and Application Lifecycle Management (ALM) data management system. The architecture
is designed to provide a robust, scalable and user-friendly solution for managing pump operations,
such as extracting structured project data and integrating it into the SPADe system for further

anti-pattern analysis.

1.2 System Overview

The pump system is a complex software solution that is responsible for:
« Extracting data from various ALM tools (Git, GitHub, Jira, etc.).
» Mapping and storing extracted data into a provided MySQL database.
« Providing a web-based user interface to configure pump behavior.
+ Enabling real-time notifications of the pumping process via WebSockets.

+ Ensuring easy deployment across different environments using containerization.

1.3 Primary Objectives

The primary objectives of the systems include:
+ Reliable pump operation, supporting multiple ALM tools with seamless integration.
+ Compatibility with existing ALM platforms and full integration with the SPADe data model.
« Scalability and modularity, allowing easy extension to support additional ALM tools.

+ Pseudonimized data storage, ensuring compliance with privacy and security requirements,
such as NDA.

+ User-friendly interface for easy pump configuration.
+ Real-time messages for monitoring and processing extraction progress.

« Containerized deployment to ensure consistent deployment across various environments.

Architecture Overview

2.1 High-Level Architecture Overview

The frontend of the system is developed using the Next.js framework, utilizing a React application
that offers a user-friendly interface for interacting with the entire system. The user starts the
data extraction by sending a request to the backend API, which responds with a HT'TP status
202 Accepted, indicating that the request was successfully received. The core component of the
system is the backend Spring Boot API, which initiates the data extraction process from various
ALM tools using the proper type of data pump. Once the data has been extracted, it is mapped
to the MySQL database, either according to the default configuration or user-specified mapping.
Since the whole pumping process is an asynchronous process, the backend also manages messages
to the frontend with Spring Boot WebSockets, that notifies the application about the status of the
extraction. On the client side, Sock]S is used to receive these messages.

The architecture of the proposed system can be seen in the Figure 2.1. Note that the system
consists of 3 different Docker containers, each of which can be deployed independently.

ﬂ Frontend y Backend
View
—_—

I . |
| ! Controller Service !
. POST ! !
T request ™~ X
i ! Start Q !
X ' collecting—>|) i
| HTTP | data GitHub I Data storage
2] 1
Next.js | status—— REST API ! J N
202 :
|
1
1

MySQRL

@

| | i
I
| : ® |
I 1 |
| | Git s |
I | —T—collected —
React ' i | b |
eac ! 1 |
| i 1‘ ! E Database
: i Jira i !
! | [
: Data : 'I.'ID.ati' :
l«——extracted collection—j
| message | finished “ : mysql
SockJs ' ' | WebSockets GitlLab !
| | I
| N |
& S
client api

Figure 2.1: High-Level Architecture Diagram

2.1.1 Technology Stack

211 Technology Stack

The system is developed using modern technologies and is organized into a layered structure,
where each layer serves a specific purpose within the ALM data extraction workflow. This section
provides an overview of the technologies used and the purpose of each component.

User Interface Layer (Frontend)

Technology: Next.js, 14.1.0 + React.js, 18.2.0

Purpose:
+ Provide a user-friendly interface for initiating ALM data extraction.
« Customize mapping of the collected data.
« Display live updates and feedback from the backend.

. Communicate with backend services.
Communication Channels:
« REST API for handling requests.

+ Spring Boot WebSockets and Sock]S for real-time messaging.

API Layer (Backend)

Technology: Java, 23.0.2 + Maven, 3.9.9 + Spring Boot, 3.4.4
Purpose:

« Act as the interface between the frontend application and backend services.

Validate and process incoming requests from the frontend.
+ Route valid requests to the appropriate pump services for data extraction.
+ Handle invalid requests through proper error management.

+ Return appropriate HTTP responses to the client.

Service Layer (Backend)

Technology: Java, 23.0.2 + Maven, 3.9.9 + Spring Boot, 3.4.4
Purpose:
+ Implement core business logic for pump control operations.

+ Process data extraction, user-defined mapping and pseudonimization.

2.1.1 Technology Stack

+ Ensure secure, transactional data handling.
« Dispatch real-time system messages.

+ Resolve errors during data collection.

Database Layer (Data storage)

Technology: MySQL, 9.2.0
Purpose:
« Provide persistent storage for the collected ALM data across multiple projects.

« Store software project details, development lifecycle information and project members.

Messaging (Frontend + Backend)

Technology:
+ Frontend = Sock]S, 1.6.1

« Backend = WebSockets from Spring Boot, 3.4.4

Purpose:
+ Real-time pump status updates from backend to the frontend.

+ Asynchronous error notifications.

Containerization

Technology: Docker, 27.2.0 + Docker Compose

Purpose:
+ Ensures consistent environments across development, test and production.
« Simplifies deployment and dependency management.

« Isolates components for better troubleshooting.

Enables easy scaling of services.

 Configures network.

2.2 Service Layer Overview

2.2 Service Layer Overview

The architecture is designed to separate generic data handling logic from tool-specific implemen-
tation details. It organizes the system into two main parts: the Core package, which contains
reusable components and the SpecificPump package, which holds implementations of specific
ALM extraction tools. This enhances maintainability and makes it easier to add support for new
tools by reusing the core service infrastructure.

Figure 2.2 illustrates that the SpecificPump class depends on its associated SpecificPumpSer-
vice, which has access to all four core services. When an operation is required, such as saving user
data, the SpecificPumpService passes this task to the relevant core service (PumpUserService).
That core service then forwards the request to a dedicated service that operates over a specific
repository, for example PersonService operating over PersonRepository.

Core package

WorkItem
related
services

User
related
services

Configuration
related
services

Project
related
services

Uses Uses

—
o
c
E]

©
o
o
=
=
.

«
c
>
@O
=1
[
o
=]
»
@
S
<
ol
o

—°
o
c
3

°
=
o
S
=
[
~+
@
]
%)
@
=S
<
B
o

L;J
o
c
E]

°
<=
o
@
=
[
@
]
<
B
o
@
o
c
E]

o
o
]
o

.
)
o
-+
%)
@
>
<
B
o
o

Uses _ _ ___L___ Uses
Uses [- ‘I Uses

|

! :

: SpecificPump

| |

! |

: Uses |

| J/ !

| |
\““_F

SpecificPumpService |

\ ! .)
T 3

SpecificPump package

Figure 2.2: Service Structure Diagram

2.2.1 Core Package
The Core package contains the fundamental building blocks of the service layer, including:
+ The abstract Pump class, which defines the template for all specific pump implementations.

« A set of entity-specific services, providing unified functionality for handling different types
of ALM data.

2.2.2 Specific Pump Package

« Four core pump services utilizing its corresponding entity-related services. These services
contain reusable business logic for processing and storing data entities independent of their
ALM source. These core services are namely:

PumpConfigurationService

— PumpWorkItemService

PumpUserService

PumpProjectService

2.2.2 Specific Pump Package

This represents a specific implementation for an individual ALM data pump. While the implemen-
tation details may differ between the tools, every pump should include the following components:

+ A SpecificPump class that extends the abstract Pump class from the Core package, imple-
menting all the required methods for the data extraction lifecycle specific to that tool.

+ A dedicated SpecificPumpService class encapsulating the business logic of this particular
pump.

2.2.3 List of Related Services

As previously mentioned, the Core package relies on four core services, each of which utilizes its
respective related services. These services are organized according to the entity relationships in
the SPADe database and the goal is to create a new service for every entity within the database
that operates under a single repository. For example, the CommitService should be the only ser-
vice operating under the Commi tRepository and any operations requiring multiple repositories
should be implemented in the core service PumpConfigurationService. Below is a list of related
entities (services) according to their relationships in the SPADe database.

PumpConfigurationService

+ Branch + Configuration + ConfigurationPerson
Relati

+ Commit + ConfigurationBranch clation

+ CommittedConfiguration « ConfigurationChange + Tag
PumpWorkltemService

« Artifact « Priority « RelationClassification

«+ Category + PriorityClassification + Resolution

« FieldChange + Relation + ResolutionClassification

2.2.3 List of Related Services

« Severity « Workltem « WorkUnitCategory
« SeverityClassification « WorkItemChange
« WuType

« Status « WorklItemRelation

» StatusClassification « WorkUnit « WuTypeClassification
PumpUserService

« Competency + PeopleGroup « PersonRole

+ GroupMember + Person + Role

« Identity + PersonCompetency « RoleClassification
PumpProjectService

+ Activity + MilestoneCriterion + ProjectInstance

« Criterion « Phase « Toollnstance

+ Iteration + Program

+ Milestone + Project

ALM Data Pump
Implementation

3.1 Package-Level Overview

The component diagram in Figure 3.1 illustrates the high-level package structure of the backend
system architecture. It showcases the modular design employed to handle data extraction from
different ALM tools. The architecture is divided into several main components, each represented
as a package:

« CORE: This central package encapsulates the core functionalities and shared components
of the system. It includes sub-packages for handling common concerns such as configu-
ration (config), data mapping (mapper), API request handling (controller), data represen-
tation (entity), data persistence (repository) and core business logic (service). The service
sub-package itself contains components for managing specific group of services like con-
figuration, work_item, user and project.

« JIRA: This package contains the specific logic required to interact with the Jira ALM tool.
It includes its own config, mapper, parser and service components tailored for Jira data
extraction. This package utilizes the functionalities provided by the CORE package.

« GITHUB: This component handles interactions with the GitHub platform. It contains
config, mapper, parser, service and domain specific to GitHub and it also depends on the
CORE package.

+ GIT: This package is responsible for extracting data directly from Git repositories. It con-
tains config, mapper and service components for this purpose and relies on the shared
CORE package.

This modular structure, where tool-specific packages (Jira, GitHub, Git) depend on a central
CORE package, promotes code reusability and separation of concerns. It allows for easier main-
tenance and extension, as adding support for a new ALM tool would primarily involve creating a
new tool-specific package that utilizes the existing CORE functionalities.

3.2 Class-Level Overview

(\.‘i‘ JIRA |

&

NZ

&

NZ

N7

config mapper -~
‘ ') COoRE | N
@ @ Uses ' SERVICE |)
k parser ser'viceJ @ ®
) configuration work_item

D

mapper parser .

— uses 9 user project

_
service domain @ ® @
N\ J
~ config mapper controller
(oo
@ @ T @ ®
entity repository

config mapper o ,/

Ng

service
N\ J

Figure 3.1: Package Structure Diagram

3.2 Class-Level Overview

The class diagram presented in Figure 3.2 outlines the core structure for the data pumping mech-
anism, emphasizing the strategy pattern used to handle different ALM data sources.

At the heart of the design is the abstract class Pump. This class defines a common template
and interface for all specific pump implementations. It declares protected properties (proper-
ties) and defines the essential steps involved in the data pumping process through methods like
collectAlmData(), connectToProvider(), initializeProject(), collectDetailedData(),
postProcessData() and cleanup(). These methods represent the standardized lifecycle of any
data extraction operation.

Concrete implementations are provided by subclasses that inherit from Pump:

10

3.2 Class-Level Overview

« JiraPump: Specializes in extracting data from Jira. It holds a reference to a JiraRestClient
and implements the abstract methods defined in Pump according to Jira’s specific AP and
data structure.

« GitPump: Handles data extraction from Git repositories. It contains a reference to a Git
object and provides the Git-specific implementation for the pumping steps.

+ GitHubPump: Focuses on extracting data from GitHub. It uses a GitHub object reference
and implements the necessary logic for interacting with the GitHub platform.

Each concrete pump class (JiraPump, GitPump, GitHubPump) is associated with multiple
service classes (JiraServices, GitServices, GitHubServices). These service classes encapsulate the
lower-level details of interacting with the respective ALM tool’s API or data source, holding
necessary clients or repositories (e.g., JiraRestClient, Git, GHRepository). Furthermore, these
specific services cooperate with a general service classes (PumpServices).

This design promotes modularity and extensibility. By defining a common abstract Pump
and associated service structure, the system can easily incorporate support for new ALM tools
in the future by simply creating new subclasses inheriting from Pump and implementing their
corresponding service logic, without altering the core pumping workflow.

JiraPump

- jiraRestClient: JiraRestClient JiraServices

1.1
- jiraRestClient: JiraRestClient

+ collectAlmData()
connectToProvider()
initializeProject()
collectDetailedData()
postProcessData() T
cleanup()

1.1

«abstract»

i GitPump

properties: <P> =B GitServices | | PumpServices

1) | + collectAlmData() 1.1

connectToProvider() - git: Git) 1.1
- repository: Repository

+ collectAlmData()

connectToProvider() - specificService: Service

initializeProject()

collectDetailedData()
postProcessData()

cleanup()

initializeProject()
collectDetailedData()
postProcessData()

cleanup()

GitHubPump

- github: GitHub

+ collectAImData()

connectToProvider()
initializeProject()

collectDetailedData()
postProcessData()

cleanup()

1.1

(

GitHubServices

- ghRepository: GHRepository %

(

Figure 3.2: Class Diagram

11

API 4

This chapter covers the RESTful API provided by the backend system. The API serves as the
primary communication channel for the frontend application to interact with the data pump and

project management functionalities. The API is defined using the OpenAPI 3.1.0 Specification,
ensuring a standardized and well-documented interface.

4.1 Endpoints
411 Pumps

Operations related to initiating data extraction processes.

POST /pumps/{tool}

« Initiates an asynchronous data extraction process (pump) for a specified ALM tool.

« The tool is identified by the tool path parameter, which can be either of jira, git or github.

41.2 Projects

Operations for managing projects within the SPADe system.

GET /projects

+ Retrieves a list of projects currently stored in the SPADe system. Supports pagination via
optional page and size query parameters.

DELETE /projects/{projectid}

« Initiates an asynchronous process to delete a specific project, identified by projectld in the
path, along with all its associated data from the system.

41.3 Tools

Operations related to querying supported ALM tools.

GET /tools

+ Retrieves a list of all ALM tools currently supported by the data pump system.

12

4.2 API Design Best Practices

4.2 API Design Best Practices

The API follows industry-standard design patterns and conventions, including:

« Data Transfer Objects (DTOs): Structured schema definitions ensure consistent resource
representation across endpoints while abstracting internal data models.

- Pagination: Supports standardized pagination for large datasets, including metadata such
as page number, size, total records and sorting criteria to enable efficient data retrieval.

+ Error Handling: Errors are reported using the ProblemDetail schema, aligning with RFC
7807 for standardized HTTP problem details. This includes fields like type, title, status,
detail and instance.

13

List of Figures

2.1
2.2

3.1
3.2

High-Level Architecture Diagram

Service Structure Diagram o o

Package Structure Diagram

Class Diagram

14

	Introduction
	Purpose
	System Overview
	Primary Objectives

	Architecture Overview
	High-Level Architecture Overview
	Technology Stack

	Service Layer Overview
	Core Package
	Specific Pump Package
	List of Related Services

	ALM Data Pump Implementation
	Package-Level Overview
	Class-Level Overview

	API
	Endpoints
	Pumps
	Projects
	Tools

	API Design Best Practices

	List of Figures

