
Software Architecture

Jakub Pavlíček

PILSEN, CZECH REPUBLIC 5. 4. 2025

Contents

1 Introduction 2
1.1 Purpose . 2
1.2 System Overview . 2
1.3 Primary Objectives . 2

2 Architecture overview 4
2.1 High-Level Architecture Overview . 4
2.2 Technology Stack . 5

3 Component Detailed Description 6
3.1 User Interface (UI Layer) . 6
3.2 API Layer . 6
3.3 Service Layer . 7
3.4 Database Layer . 7
3.5 Event Streaming . 7
3.6 Containerization . 8

List of Figures 9

1

Introduction 1
1.1 Purpose
This document presents a comprehensive overview of the software architecture for a pump
control and Application Lifecycle Management (ALM) data management system. The archi-
tecture is designed to provide a robust, scalable, and user-friendly solution for managing
pumpoperations, such as extracting structured project data, and integrating it into the SPADe
system for further anti-pattern analysis.

1.2 System Overview
The system is a complex software solution that is responsible for:

• Extracting data from various ALM tools (Jira, Git, Github, etc.).

• Mapping and storing extracted data into a provided MySQL database.

• Providing a web-based user interface to configure pump behavior.

• Enabling real-time notifications of the pumping process with a message broker.

• Ensuring easy deployment across different environments using containerization.

1.3 Primary Objectives
The primary objectives of the systems include:

• Reliable pump operation, supporting multiple ALM tools with seamless integration.

• Compatibility with existing ALM platforms and full integration with the SPADe data
model.

• Scalability and modularity, allowing easy extension to support additional ALM tools.

• Pseudonimized data storage, ensuring compliance with privacy and security require-
ments, such as NDA.

• User-friendly interface for easy pump configuration and real-time monitoring.

2

1.3 Primary Objectives

• Real-time data streaming for monitoring and processing extraction progress.

• Containerized deployment to ensure consistent deployment across various environ-
ments.

3

Architecture overview 2
2.1 High-Level Architecture Overview
The frontend is built with React, providing a user-friendly interface for interacting with
the entire system. The user starts the data extraction by sending a request to the backend
API, which responds with a HTTP status 202 Accepted, indicating that the request was
successfully received. The core component of the system is the backend Spring Boot API,
which initiates the data extraction process from various ALM tools using the proper type of
data pump. Once the data has been extracted, it is mapped to the MySQL database, either
according to the default configuration or user-specified mapping. Since the whole pumping
process is an asynchronous process, the backend alsomanages message broker Apache Kafka,
that notifies the frontend application about the status of the extraction. The architecture of
the proposed system can be seen in the figure 2.1.

Figure 2.1: High-Level Architecture Diagram

4

2.2 Technology Stack

2.2 Technology Stack
• Frontend – React.js, 19.0.0

• Backend – Java, 23.0.2 + Maven, 3.9.9 + Spring Boot, 3.4.4

• Database – MySQL, 9.2.0

• Event Streaming – Apache Kafka, 4.0.0

• Containerization – Docker, 27.2.0

• Env file sharing – git-crypt, 0.7.0

5

Component Detailed
Description 3

3.1 User Interface (UI Layer)
Technology: React.js

Responsibilities:

• Provide an intuitive pump control interface to manage data extraction.

• Display real-time system status updates.

• Handle user interactions and inputs.

• Communicate with backend services.

Communication Channels:

• REST API for handling requests.

• Apache Kafka for streaming real-time updates.

3.2 API Layer
Technology: Spring Boot

Responsibilities:

• Provide a standardized interface for communication between the frontend and
backend services.

• Validate and process the requests from the frontend application.

• Route requests to the appropriate pump services for data extraction.

Key Features:

• Request and response handling.

• Error handling.

6

3.3 Service Layer

3.3 Service Layer
Technology: Spring Boot

Responsibilities:

• Implement core business logic for pump control operations.

• Manage pump control operations, such as data extraction and transformation.

• Enforce safety protocols and secure operations.

• Publish events for system updates.

Key Processes:

• Command processing and execution.

• Data anonymization.

• Event publishing via Apache Kafka.

• Error management.

3.4 Database Layer
Technology:MySQL

Purpose: Persistent storage of ALM data

Stored Information:

• Software project details.

• Development lifecycle data.

• People involved in the project.

3.5 Event Streaming
Technology: Apache Kafka

Responsibilities:

• Asynchronous communication between the frontend and backend.

• Real-time status updates for frontend.

• Decoupling of system components.

Use Cases:

• Pump status broadcasting.

• Error notifications.

7

3.6 Containerization

3.6 Containerization
Technology: Docker & Docker Compose

Benefits:

• Ensures consistent environments across development, test, and production.

• Simplifies deployment and dependency management.

• Isolates components for better troubleshooting.

• Enables easy scaling of services.

Configuration Management:

• Handles service dependencies.

• Allocates resources efficiently.

• Configures network.

8

List of Figures

2.1 High-Level Architecture Diagram . 4

9

	Introduction
	Purpose
	System Overview
	Primary Objectives

	Architecture overview
	High-Level Architecture Overview
	Technology Stack

	Component Detailed Description
	User Interface (UI Layer)
	API Layer
	Service Layer
	Database Layer
	Event Streaming
	Containerization

	List of Figures

